前言:西门子代理商,西门子模块代理商,西门子一级代理商,西门子PLC代理,西门子中国代理商
6ES7211-0BA23-0XB0当天发货1 引言随着汽车工业的飞速发展,人们对轮胎的各项性能要求越来越高,这极大地促进了轮胎模制造技术的发展。过去轮胎模具表面花纹简单,而现在轮胎模具表面有许多形状相同的或不相同的单元凸块按一定的规律排列的花纹,由于轮胎模具上的花纹精度和质量将直接影响轮胎的质量和性能,因此在电火花成型机上加工轮胎模具时,为制造这些排列有规律的花纹,就必须对模具进行jingque分度。2 工艺要求该轮胎模电火花成型机可以生产轮胎模内径为500mm~1200mm,等分数为2~500朵花纹的各种轮胎模,工作台回转精度不小于7°。在对中模式(调整模具圆心与工作台圆心重合)时,工作台回转速度为 0~0.5rpm;在手动调整模式时,工作台回转速度为0~0.5rpm;在自动加工模式时,工作台回转速度为0~0.25rpm。所有工作参数均可以从人机操作界面中调整和设定。3 自动分度系统、硬件配置及软硬件设计3.1 自动分度系统在保证达到测试要求的前提下,尽可能选择、运行可靠、开发周期短的方案。综合考虑后,采用触摸屏作为上位机、PLC作为下位机的设计方案。利用RS-232串口通讯完成数据传输。系统框图如图1所示:触摸屏是专门面向PLC应用的,它不同于一些简单的仪表式或其它的一些简单控制PLC的设备,它功能强大,使用方便,抗干扰能力强,非常适合现代化工业越来越庞大的工作量及功能的需求,它日益成为现代化工业必不可少的设备之一。下位机可编程控制器具有扩展方便、控制简单、抗干扰能力强、价格低廉等优点;PLC作为下位机完成分度控制、加工控制和采集编码器反馈的数据等功能。3.2 控制系统的硬件配置根据性能要求,从经济角度出发,选择主要器件:(1) 触摸屏采用EASYVIEW的MT508S。该系列人机界面除了拥有一般人机界面的功能外,还提供了许多特有的功能:a) 可以同时开启6个弹出窗口。b) 可以拥有和bbbbbbs95/98一样的任务栏和快选窗口。c) 采用强大的32位RISC处理器(Inbbb的StrongARM), 使MT508拥有更快的处理速度。(2) 旋转编码器采用日本NEMICON公司精度为5400P/R产品,它将工作台的位置信号反馈给PLC,再由PLC进行数据处理后,控制步进电机动作,从而达到jingque控制工作台位置的目的。(3) PLC采用永宏公司的FB系列的FBE-20MC。采用该系列PLC主要有两个原因:a)采用硬件电路构成的硬件高速计数器(HHSC),高计数频率20kHz,而且是32位的高速计数器。B)PLC的计数器自带4倍频电路,对编码器信号进行4细分,提高系统精度。采用一组硬件高速计数器对编码器的反馈脉冲进行计数。FB-PLC的每组硬件高速计数器都有8种计数模式可供选择,我们选用了MD7,即输入信号为两路相位相差90°的脉冲信号,对两路信号的上升沿和下降沿分别计数,这样高速计数器就计数4个脉冲,如图2所示。原来编码器反馈的信号的精度为360°÷5400=0.067°,这显然达不到要求,但经过后继电路进行电平转换和PLC的4倍频电路细分后,在不增加任何硬件的前提下使编码器的分辨率提高到360°÷5400÷4=7°。在分度控制系统中,我们将编码器反馈的脉冲数与PLC计算出的目标脉冲数进行比较,如果反馈值小于或大于目标值,则说明工作台还没有到达目标位置,如果两值相等,则说明工作台已达到目标位置。用这种方法实现工作台位置的闭环控制。(4) FBE-20MC是控制系统的核心器件,其输入输出信号分配如图3所示:3.3 PLC程序流程图PLC程序流程图如图4所示:4控制系统合理性和可靠性设计本轮胎模电火花加工仪虽然测控对象数量不多,机械结构也并不复杂,但工作台体积大,转动惯量大,电火花加工时干扰很大。要让它能够高精度、高可靠性地完的控制任务,同时为了能给操作人员带来方便 ,我们作了如下考虑:(1) 机械部分的合理设计机械部分是控制系统的被控对象,是决定控制系统能否可靠工作的前提。我们采用了有合适过盈配合的蜗轮蜗杆传动结构,为工作台高回转精度和自锁提供了条件。(2) 良好的人机界面触摸屏构成人机界面从画面、提示语句、色彩等方面给人以轻松、醒目的感觉;各控制画面的设计是以各控制功能集中为原则,操作简便;触摸屏上显示出各种设定参数和系统运行状态,操作人员易于了解系统工作状况,操作也方便。(3) 系统的抗干扰措施该分度系统的控制器是选用高可靠性的PLC和传感器,从设备上保证了系统的可靠性;各控制柜在电路上完全隔离,各控制柜内模拟电路和数字电路也采取了分离屏蔽措施,尤其是电火花加工设备发出的电磁干扰;各控制柜也有良好的通风和散热措施。5 结束语本文所述的轮胎模电火花加工仪的分度系统从2002年8月起已经应用于多套设备中,配备有本分度系统的电火花加工仪,在试运行期间和正常工作时,无论模具大小、轻重,分度系统都能控制工作台jingque分度,用户反应效果非常理想,已经带来了很大的经济效益。1 引言空气压缩机是一种利用电动机将气体在压缩腔内进行压缩并使压缩的气体具有一定压力的设备。作为基础工业装备,空压机在冶金、机械制造、矿山、电力、纺织、石化、轻纺等几乎所有的工业行业都有广泛的应用。空压机占大型工业设备(风机、水泵、锅炉、空压机等)耗电量的15%。由于结构原理的原因,大部分空压机自身存在着明显的技术弱点。当输出压力大于一定值时,自动打开泄载阀,使异步电动机空转,严重浪费能源;异步电动机易频繁的启动、停止,影响电机的使用寿命,压机工频启动电流大,对电网冲击大,电机轴承磨损大,设备维护量大;工作条件恶劣,噪音大;自动化程度低,输出压力的调节是靠人为调节阀的开度来实现的,调节速度慢,波动大,不稳定,精度低。针对以上存在的问题,设计采用PLC和变频器实现对螺杆式空气压缩机的节能改造方案,经分析,该方案自动化程度高,节能效果显著,实用性好。2 空压机变频改造原理2.1 空压机的工作原理螺杆式空压机的工作原理图如图1所示,空气经空气过滤器和吸气调节阀而吸入,该调节阀主要用于调节气缸、转子及滑片形成的压缩腔,阴、阳转子旋转相对于气缸里偏心方式运转。滑片安装在转子的槽中,并通过离心力将滑片推至气缸壁,高效的注油系统能够确保压缩机良好的冷却及润滑油的小舒适耗量,在气缸壁上形成的一层薄薄的油膜可以防止金属部件之间直接接触而造成磨损。经压缩后的空气温度较高,其中混有一定的油气,经过油气分离器进行分离,之后,油气经过油冷却器冷却在经过油过滤器流回储油罐,空气经过气后冷却器(空气冷却装置)进行冷却而进入储气罐。图1 空气压缩机原理图2.2 空压机变频节能原理螺杆式空压机基本运行方式是加载、减载方式。减载时电机空转,能源白白的浪费,如果利用变频器通过改变电机频率来调节转速,变频控制即通过改变电动机的转速来控制空压机单位时间的出风量,从而达到控制管路的压力,具有明显的节能效果。空压机变频节能系统原理如下:通过压力变送器测得的管网压力值与压力的设定值相比较,得到偏差,经PID调节器计算出变频器作用于异步电动机的频率值。由变频器输出的相应频率和幅值的交流电,在电动机上得到相应的转速。那么空压机输出对应的压缩空气输出至储气罐,使之压力变化,直到管网压力与给定压力值相同。2.3 变频改造注意事项(1) 空压机是大转动惯量负载,这种启动特点很容易引起变频器在启动时出现跳过流保护的情况,建议采用具有高启动转矩的无速度矢量变频器,保证既能实现恒压供气的连续性,有可保证设备可靠稳定的运行。(2) 空压机不允许长时间在低频下运行,工作下限应不低于20Hz。(3) 建议功率选用比空压机功率大一等级的变频器,以免空压机启动出现频繁跳闸的情况。(4) 为了有效的滤除变频器输出电流中的高次谐波分量,减少因高次谐波引起的电磁干扰,建议选用输出交流电抗器,还可以减少电机运行的噪音。(5) 设计的系统应具备变频和工频两套控制回路,确保变频出现异常跳保护时,不影响生产。3 基于PLC的空压机变频控制系统3.1 系统原理设计控制系统由以下部分组成:变频器、可编程控制器、变频柜、电抗器、压力变送器、震荡传感器等。基于PLC的变频控制系统原理图如图2所示。PLC由触摸屏、电源、CPU、模拟量输出模块等组成。其中采用PLC来实现电气部分的控制。包括五部分:起动、运行、停止、切换、报警及故障自诊断。图2 基于PLC的空压机变频控制系统原理图(1) 起动:以两台电机M1,M2为例,可以通过转换开关选择变频/工频启动。运行:正常情况,电机M1处于变频调速状态,电动机M2处于停机状态。现场压力变送器检测管网出口压力,并与给定值比较,经PID指令运算,得到频率信号,动动调节转速达到所需压力。(2) 停止:按下停止按钮,PLC控制所有的接触器断开,变频器停止工作。(3) 切换:实现M1,M2工频、变频相互切换。(4) 报警及故障自诊断:空压机内部一般有四个需要监测的量:冷却水压力监测、润滑油监测、机体温度监测、储气罐压力监测。3.2 案例分析以某厂房空压机为例。改造前经测试参数如下:电机功率110kW,出口压力为5.9~6.5MPa,运行时间为12小时/天,一年运行320天,加载时间为15s,减载时间15s;加载电流为190A,减载电流为90A。经检测其节电率为30%以上。年节电量(按30%)计算如下:W节电量=12×320×110×30%=1.27×105(k·Wh)可见节电效果明显,此外,改造后系统还存在其它优点。首先,减少了机器的噪音。其次,两套控制回路可保证系统的正常、安全运行。后,自动化程度高,克服原系统手动调节的缺点。4 结束语利用PLC和变频器实现对螺杆式空气压缩机的节能改造方案实验结果表明,改造后系统具有节约能源,自动化程度高,降低原系统噪音,减少设备维修量等优点,具有深入研讨的实用价值。1 引言电厂出灰系统是热电厂的一个重要系统。近几年灰渣利用率越来越高,同时干式出灰系统具有节约水资源、保护环境等特点,因此目前电厂出灰多采用干式出灰系统。在干式出灰系统中,工况恶劣、控制点数多。传统的控制系统由于抗干扰能力弱、可靠性差、效率低,达不到预期的控制目标。而可编程逻辑控制器(PLC)的抗干扰能力强、可靠性高,选用可编程控制器(PLC)用于某热电厂锅炉干式出灰系统可以显著提高工程的实用性。2 工艺流程及控制要求2.1 系统工作流程某热电厂共有八台锅炉,每台锅炉包括三个电场集尘装置,每个电场包括一组(两个)仓泵,每个仓泵附近配置一个就地控制箱,利用控制箱盘面上的手动开关,可以对现场阀门进行手动操作和现场调试。下面以单个仓泵为例来说明具体的工艺流程。锅炉烟气中的灰尘通过电收尘收集后落入灰仓,灰仓下部安装有仓泵,灰经输灰管进入仓泵。在自动控制运行工况下,具体工艺流程为:仓泵内无灰时,打开透气阀→延时5s→开进料阀→延时5s→当仓泵进料量达到设定值(时间/重量/人工)时→料位信号到→关闭进料阀→延时5s→关闭透气阀→此时判断母管压力是否到位/判断灰管压力是否到位/判断在此系统中没有其它仓泵出灰,所有条件满足→打开出料阀→延时5s→打开一次气阀→延时5s→打开二次气阀1min后→检查灰管压力,当灰管压力低于设定值时→关闭一次气阀→延时20s后→关闭二次气阀→关闭出料阀完成一次出灰循环。当发生出灰管路堵塞时,系统设置了排堵阀,通过负压反抽来疏通出灰管路。关闭一次气阀后,延时20s后关闭二次气阀。目的是保证出灰管路畅通,避免发生管路堵塞。每台仓泵的出灰系统如图1所示。图1 出灰系统流程示意图2.2 控制要求(1) 实现出灰的过程自动化,为便于操作调整及应急处理,应能随时切换到手动控制状态;(2) 当操作室内的“远程/就地”开关打到“就地”位置时,自动停止出灰;(3) 仓泵的进料重量和进料时间双重控制,进料重量或进料时间任意一个达到要求都作为仓泵料满对待;(4) 同一出灰管线上只能有一个仓泵出灰,一电场用一根出灰管,先满足出灰条件的优先出灰,二、三电场共用一根出灰管,先满足出灰条件的优先出灰;(5) 当发生灰管堵塞后(灰管压力大于550KPa),报警指示灯发出声光报警,直至灰管堵塞故障排除;(6) 当来气母管压力小于400KPa时,系统自动停止运行。3 控制系统构成本系统选用西门子公司的S7-300型可编程控制器和MT500型触摸屏人机界面。MT500型触摸屏直观生动地显示PLC、PC机上的数据信息。S7-300是模块化中型PLC系统,能满足中等性能要求的应用。该控制系统主要由主控制柜、现场控制箱、若干测量传感器和辅助电器(称重传感器、压力传感器、电磁阀等由生产厂家配套供给)等组成,具有仓泵运行远程自动、远程手动、现场手动三种控制方式,控制方式的转换由设置在主控制柜上的转换开关完成。开关切换至自动位置时,点击要使用的仓泵画面,可选择其中一种方式。S7-300系列PLC作为西门子公司的新一代产品,具有以下特点:(1) 功能强:极强的计算性能,完善的指令集,MPI接口和通过SIMATIC NET联网能力强;(2) 快速:指令处理极其快速,功能强大的CPU只需0.3ms就可处理1024个二进制语句,在文字处理方面也同样表现出色;(3) 通用:高性能模板和六种CPU适用任一场合,模块可扩至3个扩展机架,用户友好的bbbbbbS STEP7编程;(4) 全集成:全部模块化,运行可靠,操作方便,特别适合于比较恶劣的工况。本系统PLC由电源模块、模拟量输入模块、数字量输入模块、数字量输出模块和中央处理单元组成。控制系统组成框图如图2所示。图2 出灰控制系统图4 软件设计4.1 系统界面设计系统界面分系统主画面与系统操作画面。在系统主画面中,可以选择要操作的仓泵和要启停的系统。在操作画面中,运行人员可观察每个仓泵的运转情况,也可对每个仓泵进行远方操作或根据运行工况对系统的参数进行修正,以保证系统的正常运行。故障发生后,可以在操作画面进行故障的处理。系统的操作画面如图3所示:图3 操作画面4.2 系统程序设计(1) 在系统程序设计中,为防止在自动运行状态下,由于灰量大或别的原因使出灰过程受阻,引起灰管压力上升慢,给系统造成仓泵内灰已出完的假象,从而导致系统判断失误。为避免系统操作引起堵管,在程序中设置了一分钟的延时时间,在出料阀打开一分钟后再检测灰管的压力,给出灰过程的顺利进行提供可靠的保证。(2) 为防止过程参数的影响,特设定了出料时间和进料时间。为防止重量信号出现故障而使控制系统一直处于进料状态,引起仓泵灰满特设定进料时间,无论重量信号有无达到设定值,都将停止进料。另外由于灰管压力不只受出灰过程的影响,而且还受来气母管压力的影响,当来气管压力升高时,会造成出灰过程顺利,灰已全部出完,但灰管压力长时间下降不到给定值。因此在程序设计中增加了出料时间,当出料时间大于8min时,系统就自动停止出灰,进入下轮循环,有效地避免了系统长时间不出灰的状况。(3) 当系统的来气压力低于额定值400kPa或灰管压力高于给定值(550kPa)时系统自动停止运行,因为此时灰管易出现堵管现象,为防止事故的进一步扩大。系统会自动出现报警,正在运行的系统会立即停下来,所有的阀门自动关闭。此时将系统切换至远程控制排堵。企业新闻