全国服务热线: 15221406036
企业新闻

西门子模块6ES7232-0HB22-0XA8当天发货

发布时间:2023-12-14        浏览次数:4        返回列表
前言:西门子代理商,西门子模块代理商,西门子一级代理商,西门子PLC代理,西门子中国代理商
西门子模块6ES7232-0HB22-0XA8当天发货

西门子模块6ES7232-0HB22-0XA8当天发货

1 引 言  
  现代控制系统中的模糊控制能方便地解决工业领域中常见的非线性、时变、大滞后、强耦合、变结构、结束条件苛刻等复杂问题。可编程控制器以其高可靠性、编程方便、耐恶劣环境、功能强大等特性很好地解决了工业控制领域普遍关心的可靠、安全、灵活、方便、经济等问题,这两者的结合,可在实际工程中广泛应用。该文研究了通用模糊控制器在PLC上实现的几种算法,用离线计算、在线查表插值的方法实现模糊控制。
  为了满足不同执行机构对控制量形式的要求,采用增量式/位置式模糊控制输出的算法,在增量式模糊控制输出时,可实现手动与自动之间的无扰动切换。为了消除由于频繁动作引起的振荡,采用了带死区的模糊控制算法。此外,一般的在线查表模糊控制器中存在着模糊量化取整环节,即当误差E与误差变化率EC不等于模糊语言值(例如NB,NM,NS,ZO,PS,PM或PB)时,E和EC取整,这时从查询表中查到的控制量U只能近似地反映模糊控制规则,因此产生误差。由于量化误差的存在,不仅使模糊控制器的输出U不能准确地反映其控制规则,而且会造成调节死区,在稳态阶段,使系统产生稳态误差,甚至会产生颤振现象。文中提出的二元三点插值法可从根本上消除量化误差和调节死区,克服由于量化误差而引起的稳态误差和稳态颤振现象。图1—1给出了通用模糊控制器的基本组成结构。
2 通用模糊控制器在PLC上的设计实现
  图2—1 增量式输出模糊控制系统框图
型;确定各模糊变量的隶属函数类型;jingque输入、输出变量的模糊化;制定模糊控制规则;确定模糊推理算法;模糊输出变量的去模糊化;按所需的格式保存计算结果生成查询表。


  实际应用中广泛采用的二维模糊控制器多选用受控变量和输入给定的偏差E和偏差变化率EC作为输入变量,因为它已能够比较严格的反映受控过程中输入变量的动态特性,可满足大部分工程需要,同时也比三维模糊控制器计算简单,模糊控制规则容易理解。对于多变量模糊控制器可利用模糊控制器本身的解耦特点,通过模糊关系方程分解,在控制器结构上实现解耦,即将一个多输入多输出(MI—MO)的模糊控制器,分解成若干个多输入单输出(MI—SO)的模糊控制器,这样就可采用单变量模糊控制器的设计方法。该文研究了二维通用模糊控制器的设计。为了便于由用户在线控制时决定是增量式输出还是位置式输出,输出变量取调节量的变化U,这也有利于通过对调节量变化U的调整,使系统偏差减少。
  由于模糊控制器的控制品质受控制器输出方式的影响,对不同的受控对象提供位置式输出和增量式输出这两种选择方式。位置式输出算法的缺点是输出的u(k)对应的是执行机构的实际位置,如果计算机出现故障,会引起由于u(k)的大幅度变化而导致执行机构位置的大幅度变化。如果采用增量式算法时,计算机输出的是控制增量Δu(k)对应的本次执行机构位置(例如阀门开度)的增量,图2—1为增量式输出模糊控制系统框图,阀门实际位置的控制量即控制量增量的积累是利用算式u(k)=u(k-1)+Δu(k)通过执行软件来完成。


  模糊控制算法的实现是通过模糊推理所得,但该结果是一个模糊矢量,不能直接用于控制被控对象,必须转换为一个执行机构可以接受的jingque量。将所有可能输入状态的非模糊输出以同样方法计算后形成如表2—1所示的查询表,该表以数据模块形式存入计算机程序中,当一组输入给定时,可由该表查出相应的输出值。该方法将复杂的模糊计算融进查询表中,在实际使用时节省计算时间,并使控制变得简单明了。

2.2 在线部分设计
  计算机离线运算得到的模糊控制器的总控制表经过系统在线反复调试、修改,后以数据模块形式存入PLC系统内存中,由一个查询该表的子程序管理。查询子程序的流程如图2—2所示,图中fielde、fieldec及fieldu分别表示误差E、误差变化率EC和控制量U的论域范围。由流程图可知,控制器的调节方式有手动和自动两种,输出方式有增量式和位置式输出两种。如果输出方式选择为增量式输出,则可以实现手动调节方式到自动调节方式的无冲击切换。




2.2.1 二元三点插值
  给定矩型域上n×m个结点(xi,yj)的函数值zij=(xi,yj),其中i=0,1,…,n-1;j=0,1,…,m-1,在两个方向上的坐标分别为x0<x1<…<xn-1,y0<y1<…<ym-1,利用二元三点插值公式可计算出指定插值(u,v)处的函数近似值w=z(u,v)。表2—1用函数形式表示为Uij=f(Ei,ECj),其中i=1,2,…,k1;j=1,2,…,k2。设某个采样周期的输入为E、EC,则需求出U=f(E,EC)的值。
  采用二元三点插值法运算相当于E与EC在其论域内的分档数趋于无穷大,这样不仅能够满足表2—1所给出的查询表制定的控制规则,而且还在控制规则表内的相邻分档之间以线性插值方式补充了无穷多个新的、经过细分的控制规则,更加充实完善了原来的控制规则,并从根本上消除了量化误差和调节死区,克服了由于量化误差而引起的稳态误差和稳态颤振现象,显著改善了系统的性能,尤其是稳态性能。  
2.2.2 带死区的模糊控制算法
  为了避免控制动作过于频繁,消除由于频繁动作引起的震荡,带死区的控制算法是一个好的解决办法。

  上式中,死区e0是一个可调节的参数,其具体数值可根据实际控制对象由实验确定。若e0值太小,使控制动作过于频繁,达不到稳定被控对象的目的;若e0值太大,则系统将产生较大的滞后。
  带死区的模糊控制器的系统结构如图2—3所示,此控制系统实际上是一个非线性系统。即当|e(k)|≤|e0|时,模糊控制器输出为零;当|e(k)|>|e0|时,模糊控制器有适当的输出。


3 应用实例  
  电机调速控制系统见图3—1,模糊控制器的输入变量为实际转速与转速给定值之间的差值e及其变化率ec,输出变量为电机的电压变化量u。图3—2为电机调试输出结果,其横坐标为时间轴,纵坐标为转速。当设定转速为2 000r/s时,电机能很快稳定运行于2 000r/s;当设定转速下降到1 000r/s时,转速又很快下降到1 000r/s稳定运行。


4 小 结  
  通用模糊控制器在PLC上的实现采用了二维模糊控制结构,这种结构能确保系统的简单性和快速性。它的输入为系统误差E和误差变化率EC,因此它具有类似于常规PD控制器的功能和良好的动态特性。在实际应用中证实,系统响应速度快,超调量很小,稳态精度高。为了获得更好的静态性能,应加入模糊积分单元,构成PID模糊控制器。

 引 言
  目前,应用于民用工业、国防行业和大型实验室的各种试验箱设备越来越多,如温度试验箱、压力试验箱、湿度试验箱及各种温度-压力-湿度混合试验箱。这些环境试验设备的主要作用是为某些相应的产品做特定的环境试验,以达到检测和鉴定的目的。随着我国军事现代化步伐的加快,国防行业对这些试验设备的要求越来越高。长期以来,试验箱的生产和设计都由专门的企业来完成,控制手段基本上是采取仪表结合有纸纪录仪来实现,虽然性能比较稳定,但功能略显单调,尤其在数据保存、图形显示方面显得力不从心。为此,笔者与沈阳冷冻机有限公司合作,以温度试验箱为例,设计了一种由PC机和PLC构成的高低温试验箱微机自动控制系统,系统结构如图1—1所示。
  图1—1所示控制系统中,试验箱体积为3 m3,试验箱的加热器和制冷机组等设备的控制由西门子PLCS7-200通过控制柜实现。而上位机由PC机构成,其主要任务是由PLC通过PPI电缆实现自由端口的通信,并根据现场数据进行温度控制的决策、数据管理和图形显示等。

  高低温试验箱的温度控制范围是-100~+200℃,精度为±1℃。
2 控制系统主回路
  试验箱设备的控制系统主回路见图2—1所示。系统的制冷机组有两套,分别为M1和M2,由接触器K1和K2控制。M3为试验箱室内风机,用于均匀室内温度,由K3接触器控制。电加热器有两套,分别由接触器K4和K5控制接通或断开,加热控制由固态继电器SSR完成。
  试验箱的控制原理是,首先根据实际要求的控机组。其次,根据试验箱的设定温度与实际温度的比较,进行控制算法运算。后控制SSR的导通率进行试验箱的加热控制。

3 控制回路设计
  试验箱的设备控制主要由西门子公司的S7-200系列的PLC完成。目前,一般的工控系统大多数采用工控板卡、工控模块或PLC来实现。其中,工控板卡实时性好但使用维护不太方便;工控模块扩展性好但功能固定;而PLC由于其稳定性好,设计灵活,使用方便而越来越受工控界的欢迎,尤其在分布式控制系统的应用中其优势更加明显。
  该控制系统中,笔者根据试验箱系统的被控设备数量及特点,选用PLC的CPU模块为S7-200(14点DC输入,10点继电器输出),扩展模块为EM231(2路Pt100温度测量模块)。控制回路设计见图3—1所示。


    图3—1控制回路中,试验箱的温度由Pt100传感器通过EM231获得,Pt100采用三线制接法以保证测量精度。输出端Q0.0和Q0.1分别控制2台制冷机组;Q0.2控制试验箱室内风机;Q0.3和Q0.4分别控制2套电加热器;Q0.5控制试验箱室内照明。电加热器的加热控制由Q1.0通过SSR实现。输入端I0.0~I0.5用于输入控制系统的状态信号S1~S6,其含义如表3—1所示。
  系统的温度控制算法由上位PC机实现,运算结果通过PPI电缆送给PLC,终由Q1.0控制SSR。PLC控制程序流程见图3—2所示。

4 试验箱的温度控制
  对于温度试验箱控制系统,其被控对象为一阶惯性加纯滞后环节。为了实际调节方便,仍然采用常用的PID算法实现温度控制,但在整个控制过程中,对PID参数的整定进行了认真分析,并设计了一种PID参数生成器,使系统的温度控制效果得到很大改善。
  温度试验箱在试验过程中的温度控制是按设定曲线进行的,如图4—1所示。该图是一个试验曲线实例,共包含4个控温段:上升段T1、恒温段T2、降温段T3和恒温段T4。显然,为使实际的控温曲线跟踪好设定曲线,且保证在T2和T4段系统无差,达到系统要求的控温精度,PID算法的参数整定十分关键。由于试验箱的温度对象参数既要随着试件的种类和多少改变,也要随着投入的加热器和制冷机组多少而改变,在整定PID参数时要根据不同情况加以调整。为此,设计了一个温度控制PID参数生成器,用来根据不同的控温段和试验情况来生成不同的PID参数。设第n个控温段的PID参数分别为Pn,In和Dn,则该控温段的控制参数由下列矩阵确定:

  式(4—1)中,P0,I0和D0分别为系统的基本PID参数;Fn(P),Fn(I)和Fn(D)分别为第n个温控段与试验情况相关的P、I和D参数的系数函数。基于PID参数生成器的实现,通过上位PC机编程很容易实现,当然,一些相关参数还是要通过实际系统的调试获得。另外,实际应用中我们采用增量式PID算法,而输出采用位式输出,即在时间周期T内,按照PID输出的归一化结果(0~1)去控制SSR的导通时间,从而实现温度调节。试验箱温度控制系统的控制原理如图4—2所示,Ts为设定温度;Tf为实际温度。

5 PC机软件设计
  用VB6进行上位PC机的软件设计,主要完成3个任务:①实现PC机与PLC的通信;②完成试验箱的温度控制;③实现曲线编辑与数据管理。
  PC机与PLC的通信是利用PPI电缆通过PC机的COM口和PLC的自由端口实现的,通信波特率为9 600bps。试验箱的温度控制主要是实现PID参数生成器和PID控制算法。至于曲线编辑和数据管理也是程序设计中必不可少的内容,因为在试验过程中要经常更改温度的设定曲线,试验数据和图形也要通过数据库进行管理。此外,在界面设计上,结合动画图形技术,力求界面友好、操作方便。试验箱软件的具体功能如下:
    (1)任意设定控温曲线及相关控制参数;
  (2)任意设定每个控温段投入的加热器及制冷机个数;
    (3)实时显示温度数据曲线,具有缩放功能;
    (4)试验过程中各种故障报警;
  (5)试验数据库管理及报表打印。
6 结 论
  该高低温试验箱微机控制系统运行可靠、操作方便、功能强大,投放市场后深受用户好评。与传统的仪表控制方式相比,控制系统具有界面友好、使用灵活方便、数据管理功能强等优点。尤其是上位PC机的强大图形显示效果更是仪表控制所无法比拟的。该试验箱的控制原理同样适合其它种类的环境试验设备,具有一定的推广价值。


浔之漫智控技术-西门子PLC代理商
  • 地址:上海市松江区石湖荡镇塔汇路755弄29号1幢一层A区213室
  • 手机:15221406036
  • 联系人:聂航
推荐产品
信息搜索
 
西门子新闻