前言:西门子代理商,西门子模块代理商,西门子一级代理商,西门子PLC代理,西门子中国代理商
西门子6ES7221-1EF22-0XA0接线图形摩擦压力机是现代工业早出现的螺旋压力机,它虽然控制水平低,打击能量无法准确控制,但具有结构简单,价格低廉,技术成熟的优点,在我国应用十分广泛,而且仍具有很大的市场。传统的摩擦压力机控制方案一般是采用5个行程开关控制压力机打击过程中的上止点、下止点、安全打击脱盘点、回程加速提升脱盘点和回程刹车制动点;目前采用较多的是利用时间继电器定时控制打击靠盘时间的方案。这些方案对打击能量的控制都只是定性的,无法准确计算和控制运动部分能量。也有基于工业计算机的复合式摩擦压力机控制系统,但不具有通用性。 为了提高这类螺旋压力机的控制水平和自动化程度,实现打击能量可准确控制,并满足日趋复杂的工艺需要,本研究以JB53—630型摩擦压力机为例,开发了以西门子$7-200 PLC为核心、以触摸屏为人机界面的控制系统,将控制、监视和管理功能集成起来,通过人机界面设定打击行程和打击能量,可以实现一打、手动二打、手动三打、自动二打、自动三打等工艺需求,并且兼容了传统的脚控打击功能。 1 工作原理 摩擦压力机主机主要由以下几部分组成:机身、滑块、主螺杆、主螺母、飞轮、制动器、摩擦盘和操纵缸等。其工作原理如下:主螺杆的上端与飞轮固接,下端与滑块相连,由主螺母将飞轮与主螺杆的旋转运动转变为滑块的上、下直线运动。电动机经皮带轮带动摩擦盘转动。当向下行程开始时,横轴右端的操纵气缸进气,推动摩擦盘压紧飞轮,搓动飞轮旋转,滑块下行,此时飞轮加速并获得动能。在冲击工件前的瞬间,摩擦盘与飞轮脱离接触,滑块以此时所具有的速度锻压工件,释放能量直至停止。锻压完成后,开始回程,此时,横轴左端的摩擦盘压紧飞轮,搓动飞轮反向旋转,滑块迅速提升;至某一位置后,摩擦盘与飞轮脱离接触;滑块继续自由向上滑动,至制动行程处,制动器动作,滑块减速,直至停止,即完成一次工作循环。 2 硬件结构 控制系统硬件选型的原则是确保设备的稳定、可靠和长寿命运行。确保执行机构具有快速的响应,并且具有友好的人机交互界面。因此本文以西门子S7—200可编程控制器为核心,以西门子K—TP178触摸屏为人机界面,再加上外围的传感器检测、执行机构、信号输入输出等组成一个典型的通用数控系统,其结构如图1所示。要提高摩擦压力机的控制水平和控制精度,重要的是实现运动部分的能量检测。运动部分的能量主要来自于飞轮等转动部分的旋转运动动能。飞轮的动能又取决于飞轮的惯量和转速,惯量在设计时即已确定,而转速则可以通过单位时间内滑块的位移求出。因此,滑块位移检测是控制系统实现打击能量控制的为关键的参数。 这里滑块位移检测由滑块通过皮带轮带动旋转编码器旋转来实现,即将滑块的直线运动通过皮带轮同步装置转换成旋转编码器的旋转运动,编码器输出的脉冲再由S7—200的高速计数口读出。经过转换后,得到滑块的位移,通过单位时间内滑块的位移即可得到飞轮的转速,也就可计算出运动部分的准确能量。 执行机构主要指打击气阀、提升气阀、制动气阀和顶料气阀等,它们频繁动作并直接决定了摩擦压力机的控制精度。这里采用固态继电器替代传统的中间继电器控制的方案,可以极大地提高执行机构的响应速度,并且因为固态继电器为无触点开关,电气寿命也可以获得极大的提高。 系统中采用5个接近传感器作为行程控制开关,当工作方式选择为脚控打击模式时,操作方式与传统摩擦压力机控制系统的脚控打击模式一致,这样提高了控制系统的冗余性。 触摸屏已成为可编程逻辑控制器(PLC)的佳人机对话工具,系统中人机界面通过组态触摸屏实现,辅以外围丰富的按钮输入控制、信号指示灯输出和故障信号检测,使得控制系统具有直观、友好的人机交互能力,使用方便,维护简单。 3 软件结构 控制系统软件采用结构化、模块化设计。为保证系统的实时性,并兼顾PLC的运算能力,设置一个合适的定时周期程序负责采集系统输入信号和滑块位移编码器信号,触发实时参数的计算,并根据实时参数和控制指令判断系统状态,触发执行机构产生相应的动作;另外,实时的信号处理、故障检测和事件信息处理循环扫描执行,使系统能及时收发指令,可靠保护设备。 3.1 能量控制原理 螺旋压力机能量的大小是由飞轮等运动部件在接触工件前所具有的大能量而定,此能量可表示为式中:Et为运动部分具有的能量;J为飞轮等转动部分的转动惯量和;w为飞轮角速度;m为滑块等运动部分质量;v为滑块速度。式中右边项为旋转运动动能,第二项为直线运动动能。由于螺旋压力机滑块速度较低,多为0.6~0.7 m/s左右,因此直线运动动能数值很小,一般只占总能量的1%~3%。实际中,常将直线运动部分动能忽略。 在螺旋机构中,转动角速度ω与滑块速度v的关系为ω=2π(v/h),式中h为螺杆导程。因此,要控制打击能量可通过控制滑块运动速度实现。 3.2 能量控制算法 滑块运动时带动同步带运动,与同步带配合的皮带轮通过联轴节带动旋转编码器旋转,从而将滑块的直线运动转换为编码器的旋转运动,即将要测量的非电量信号(滑块位移)转换成电信号(编码器脉冲)。将脉冲信号输入PLC的高速计数口,每个定时中断周期读取一次编码器脉冲读数,即可得到滑块的实时位移和实时速度。 单位脉冲对应的位移量S=πD/P,式中:D为同步轮节圆直径;P为编码器分辨率。 每次系统上电或更换模具后,执行一次合模对零操作,将系统的零点设置为上、下模合模处,滑块位移S=nSp,式中n为编码器脉冲读数。同理,滑块速度u=△s/T,式中:舢为该周期滑块位移变化量;T为定时周期长度。 后,由滑块速度可得到飞轮的转速,在知道飞轮惯量的情况下,即可计算出此时运动部分具有的能量。当该能量达到预选能造时,打击气缸释放,打击盘脱开,滑块惯性下滑打击工件。 实际中。为了精简程序,减少CPU的计算量,在通过人机界面设定好预选能量后,软件即根据设定的打击能量计算出该能量对应的滑块目标速度,再得到该速度对应的一个定时周期的脉冲读数差值。这样,打击下行过程中,每周期测得的脉冲读数差值直接与此目标差值比较,当实际值大于目标值时,即代表运动部分已达到了设定的预选能量,迅速发出打击盘脱开指令。 3.3 打击动作流程 在一个打击动作流程中,执行机构的动作如下:得到打击命令后,刹车释放,打击盘靠紧,搓动飞轮旋转,滑块下行;此时飞轮加速,当检测到滑块达到预选能量对应的目标速度时,打击盘脱开,滑块惯性向下,以此时所具有的速度锻压工件,释放能量直至停止;锻压完成后,开始回程,提升盘压紧飞轮,搓动飞轮反向旋转,滑块迅速提升;至某一位置后,提升盘脱开;滑块继续惯性向上滑动,至制动行程处,刹车,滑块减速。直至停止,动作完毕。该过程的滑块行程一时间曲线示意图如图2所示。软件中,除了打击行程和打击能量可设定外,下行过程中的打击安全脱盘距离和回程过程中的提升加速距离、提前刹车距离等均可设定,分别用于保证设备安全和回程位置准确.打击下行流程图如图3所示.打击回程流程图如图4所示。3.4 人机界面 人机界面用于设定系统、运行参数和显示实时参数。界面包括主显信息画面、参数设置画面、故障信息画面和设备信息画面;另外,用户管理通过口令赋予操作者不同的权限,较低的权限无法修改参数,这样可以保证参数安全。 主显信息画面显示的内容包括当前打击模式、设定打击行程、预选打击能量、实时滑块位移、实际打击能量、累计打击次数以及系统提示信息等。参数设置画面可设置基本参数和参数。基本参数包括设置打击行程、打击能量、打击下行安全脱盘距离、回程提升脱盘距离比例、回程提前刹车距离、润滑间歇工作时间和自动顶料延时等;参数包括提升电机和打击电机星三角启动时间、飞轮惯量、主螺杆导程和编码器分辨率等。故障信息画面可提示用户设备故障信息和可能原因等,如滑块超程报警、润滑缺油报警;若安装了吨位指示器,则还可显示设备超载报警。设备信息画面显示的内容有设备额定压力、标称能量、大小打击行程、小装模高度等。 本研究以JB53—630型摩擦压力机为例,开发了基于S7—200的可能量预选的摩擦压力机数控系统。该数控系统已成功应用于JB53—630型和JB53—160型双摩盘螺旋压力机系统,实践证明,该系统可以通过触摸屏设定打击行程和预选打击能量,可以实现一打、手动二打、手动三打、自动二打、自动三打等工艺需求,并且兼容了传统的脚控打击功能,以较低的成本显著提高了摩擦压力机的控制水平和自动化程度,工艺适应面更广。另外,由于打击能量可控,通过预选合适的能量对锻件进行打击,可有效降低模具承受的多余能量,从而提高模具寿命。该系统可以很方便地配合自动上、下料机构、自动喷石墨机构等外设构成压力机自动化生产线,大大减少工人的劳动重复性和劳动强度,提高产品一致性。随着汽车工业在我国的飞速发展,人们对生产线输送系统的速度、精度和工程实施速度的要求大大提高,控制架构也由过去的集中控制方式转变为分散控制。滑橇输送机作为国内外普遍采用的输送形式,具有可靠性高、输送速度快等优点,而具有高灵活性和高防护等级的一体化变频器特别适合应用在这一输送系统中。 分散控制方案 工业生产自控系统传统控制方案基本上采用“集中控制”的思路,即在需要控制的设备区域设置一套主控制柜,柜内安装接触器、变频器等驱动元件,将电缆和信号线由主控柜直接连接至设备执行器(电机、电磁阀等),这种控制方式的主控柜内由于需要安装每个执行器的驱动元件,其体积巨大、安装不便,由于需要在现场敷设大量的桥架、动力电缆、控制电缆和信号电缆,存在安装周期长,施工成本高,交直流信号相互干扰严重、系统维护和改造困难等缺点。 随着现场总线技术和控制元器件不断发展,一种新的控制架构即“分布式控制”架构应运而生,其主要特点是将带有现场总线接口的控制元器件安装在现场设备附近或直接集成在电机、电磁阀上,以主控柜通过动力电源(380VAC)母线和控制电源(24VDC)母线为元件提供动力和控制电源,并通过总线实现控制,以往庞大的主控柜可以精简到极为小巧,安装和调试非常方便,同时大大简化外部布线的施工量,解决了“集中控制”架构带来的种种不便和缺点。 滑橇输送机 滑橇输送系统(见图1)目前是各个汽车制造厂普遍采用的输送设备,滑橇式输送机由动力滚床、平移滚床、旋转台、举升台、平移机和链式输式送机等各种独立输送单元所组成的组合式输送系统,每种输送单元可以独立执行某一个或多个动作(如传送车身、旋转、平移和升降等),设备的驱动装置为带有减速器的三相380V交流电机。和传统的悬挂积放链、地推链等输送设备相比,具有机动灵活、组合方便、运行平稳、可靠性高以及便于维护等显著优点。系统现场安装如图2所示。 图1 滑橇输送系统 图2 系统现场安装设备网 在设备层采用的设备网(DeviceNet)是一种底层网络,DeviceNet是20世纪90年代中期发展起来的一种基于CAN技术的开放型符合全球工业标准的低成本、高性能的通信网络。它通过一根电缆将诸如可编程序控制器(PLC)、传感器、HIM和变频器等现场智能设备连接起来,是一种分布式控制系统(DCS)。设备网与一般的通信总线相比,具有突出的高可靠性、实时性和灵活性。其主要特点可以概括如下:采用基于CAN的多主方式工作;采用非破坏性总线逐位仲裁技术;设备网上可以容纳多达64个节点地址;采用短帧结构传输;通信介质为独立双绞线;支持设备的热插拔。 一体化变频器 该系统选用德国SEW专为分散控制系统开发的MOVIMOT Z38系列变频器,该变频器专为工业现场环境和分布式控制架构设计,集成了传感器接口和主电源分段开关以及DeviceNet总线分配器和总线接口与电源,控制电压及总线相连。使用SEW公司提供的预置电缆可以便于安装。利用中央控制柜中的PLC与之通信和供给电源用于实现控制功能,而中央控制柜和驱动电机之间复杂的点对点布线则不再需要,这样节省了大量的时间和材料。 SEW MOVIMOT变频器结构紧凑、连接方便,功率范围在0.37~3kW内,均可安装在设备电机附近,实现制动电机/非制动电机的变速驱动,其性能参数如下: 电源电压:电源三相380到500V±10% 50/60Hz; 控制电压:24VDC; 通讯接口:DeviceNet; 可调整参数:2个固定转速设定,斜率发生器,4-象限或DC制动,PWM 开关频率;系统硬件架构 该系统采用Rockwell的Controllogix平台PLC,安装在中央控制柜内,采用1756-L61作为控制处理器,1756-DNB是AB Controllogix5561平台与现场设备的DeviceNet通信适配器,该模块的主要作用是PLC通信系统中作为主站发给各个现场变频器信息,并接收和发送现场输入输出信号。将其作为DeviceNet通信主站使用,完成变频器和现场设备各种数据的传送,参数监控及故障报警等。 驱动输送机电机的一体化变频器安装在设备上,中央控制柜通过母线式动力电源(380VAC)和控制电源(24VDC)为现场变频器提供能源,并通过DeviceNet专用电缆和分支T型头将用于控制输送系统中的各个电机的一体化变频器连接起来,构成分散式的控制架构。 系统软件配置 Rockwell Controllogix L61为PLC基本单元、执行系统及用户软件,是整个控制系统的核心。软件配置方面,笔者采用了Rockwell公司的RSLinx作为通讯平台,通过安装在PLC机架上的以太网通信模块访问CPU和设备网。 图3中节点号地址为“00”的站点为1756-DNB主站模块,地址为“11”~“24”的站点为安装在现场的一体化变频器。 图3 系统设备网架构PLC通过设备网主站向变频器发出正反转指令与速度设定值以控制变频器的动作方向和速度变化,同时变频器将自身状态(运行、故障信号、故障代码和运行电流值)等信息反馈给PLC,同时变频器将接入其上的开关量信号也会送至PLC以供控制程序调用。 本系统使用RS Networkx for DeviceNet 作为设备网的配置工具,通过配置变频器在设备网主站中的扫描列表,将其加入到整个系统中进行控制和管理。根据SEW变频器的数据输入输出数据结构(如表1和表2所示),配置映射区域和PLC内存分配。系统界面如图4、图5所示。 图4 变频器数据在Scan list中的位置 图5 设备网主站通信配置软件设计方面采用了RS logix5000编程软件,在用户程序设计方面使用梯形图语言,并在用户程序中划分了主控程序、设备控制程序和驱动程序等不同的功能,并分别设计多种子程序模块,其中对于变频器的驱动控制编制了独立的子程序由各个设备控制进行调用,在软件设计上体现了“分散驱动,总体协调”的思路。 实际应用效果 经过实际项目的考验,由一体化变频器和设备网够成的分散式输送控制系统的实际使用效果非常理想,适合在汽车生产线中的大规模使用,采用设备网通信控制现场一体化变频器,具有硬件安装简单、便捷,抗干扰能力强的特点。 分散式的架构有利于工程设计和现场安装调试,设备运行可靠、故障率降低而且设备故障后维修时间缩短,使得设备利用率大大提高,特别是由于采用了变频控制输送设备的电机,工件运行平稳、流畅,提高了产品数量和质量,减少了机械的磨损和冲击,延长了设备的使用寿命,从而得到用户的认可和好评企业新闻