全国服务热线: 15221406036
企业新闻

西门子模块6ES7231-7PC22-0XA0产品特点

发布时间:2023-11-27        浏览次数:1        返回列表
前言:西门子代理商,西门子模块代理商,西门子一级代理商,西门子PLC代理,西门子中国代理商
西门子模块6ES7231-7PC22-0XA0产品特点
西门子模块6ES7231-7PC22-0XA0产品特点尽管PLC(可编程序控制器)自身已具备较好的抗干扰能力,但在PLC控制系统的工程设计、应用和维护过程中,系统抗干扰能力仍然是系统可靠运行的关键。笔者在多年教学、科研和生产实践中常遇到PLC因干扰而不能正常工作的情形。因自动化系统中所使用的各种类型PLC大多处在强电电路和强电设备所形成的恶劣电磁环境中,要提高PLC控制系统可靠性,一方面要求PLC生产厂家提高设备的抗干扰能力;另一方面,要求在工程设计、安装施工和使用维护中高度重视,多方配合才能解决问题,有效地增强系统的抗干扰能力。1 干扰源分析1.1 干扰源及其一般分类  对PLC系统而言,常采用共模干扰和差模干扰的分类方法。共模干扰主要由电网串入、地电位差及空间电磁辐射在信号线上感应的共态(同方向)电压迭加所形成。共模电压有时较大,特别是采用隔离性能差的配电器供电时,变送器输出信号的共模电压普遍较高,有的可高达130V以上。共模电压通过不对称电路可转换成差模电压,直接影响测控信号,造成元器件损坏,这就是一些系统I/O模件损坏率较高的主要原因。这种共模干扰可为直流,亦可为交流。差模干扰主要由空间电磁场在信号间耦合感应及由不平衡电路转换共模干扰所形成的电压,这种干扰直接叠加在信号上,直接影响测量与控制精度。此外,按噪声产生的原因,分为放电噪声、浪涌噪声、高频振荡噪声等;按噪声的波形、性质,分为持续噪声、偶发噪声等。2.2 PLC控制系统干扰的主要来源  (1)来自空间的辐射干扰。空间的辐射电磁场(EMI),主要由电力网络、电气设备的暂态过程、雷电、无线电广播、电视、雷达、高频感应加热设备等产生,通常称为辐射干扰。其分布极为复杂。其影响主要通过两条路径:一是直接对PLC内部的辐射,由电路感应产生干扰;二是对PLC通信网络的辐射,由通信线路的感应引入干扰。辐射干扰与现场设备布置及设备所产生的电磁场大小特别是频率有关。  (2)来自电源的干扰。因电源引入的干扰造成PLC控制系统故障的情况很多,更换隔离性能好的PLC电源,才能解决问题。PLC系统的正常供电电源均由电网供电。由于电网覆盖范围广,它将受到所有空间电磁干扰而在线路上感应电压和电路。尤其是电网内部的变化,如开关操作浪涌、大型电力设备起停、交直流传动装置引起的谐波、电网短路暂态冲击等,都通过输电线路传到电源原边。PLC电源通常采用隔离电源,但因其结构及制造工艺使其隔离性并不理想。  (3)来自信号线引入的干扰。与PLC控制系统连接的各类信号传输线,除了传输有效的各类信息外,总会有外部干扰信号侵入。此干扰主要有两种途径:一是通过变送器供电电源或共用信号仪表的供电电源串入的电网干扰,这往往被忽视;二是信号线受空间电磁辐射感应的干扰,即信号线上的外部感应干扰,这是很严重的。由信号引入干扰会引起I/O信号工作异常,大大降低测量精度,严重时将引起元器件损伤。对于隔离性能差的系统,还将导致信号间互相干扰,引起共地系统总线回流,造成逻辑数据变化、误动和死机。PLC控制系统因信号引入干扰造成I/O模件损坏相当严重,由此引起系统故障的情况也很多。  (4)来自接地系统混乱的干扰。PLC控制系统正确的接地,是为了抑制电磁干扰的影响,又能抑制设备向外发出干扰;而错误的接地,反而会引入严重的干扰信号,使PLC系统无法正常工作。PLC控制系统的地线包括系统地、屏蔽地、交流地和保护地等。这样会引起各个接地点电位分布不均,不同接地点间存在地电位差,引起地环路电流,影响系统正常工作。例如电缆屏蔽层必须一点接地,如果电缆屏蔽层两端A、B都接地,就存在地电位差,有电流流过屏蔽层,当发生异常情况时,地线电流将更大。[NextPage]  屏蔽层、接地线和大地也有可能构成闭合环路,在变化磁场的作用下,屏蔽层内会出现感应电流,通过屏蔽层与芯线之间的耦合干扰信号回路。若系统地与其它接地处理混乱,所产生的地环流就可能在地线上产生电位分布,影响PLC内逻辑电路和模拟电路的正常工作。PLC工作的逻辑电压干扰容限较低,逻辑地电位的分布干扰容易影响PLC的逻辑运算和数据存贮,造成数据混乱、程序跑飞或死机。模拟地电位的分布将导致测量精度下降,引起信号测控失真和误动作。  (5)来自PLC系统内部的干扰。主要由系统内部元器件及电路间的相互电磁辐射产生,如逻辑电路相互辐射及其对模拟电路的影响,模拟地与逻辑地的相互影响及元器件间的相互不匹配使用等。要选择具有较多应用实绩或经过考验的系统。2 抗干扰设计和措施2.1 选择抗干扰性能好的设备  选择设备时,首先要选择有较高抗干扰能力的产品,包括电磁兼容性(EMC),尤其是选择抗外部干扰能力强的产品,如采用浮地技术、隔离性能好的PLC系统;其次还应了解生产厂给出的抗干扰指标,如共模拟制比、差模拟制比、耐压能力、允许在多大电场强度和多高频率的磁场强度环境中工作;另外还要调查其在类似工作中的应用实绩。在选择国外进口产品时要注意电网制式。由于我国电网内阻大,零点电位漂移大,地电位变化大,工业企业现场的电磁干扰至少要比欧美地区高4倍以上,对系统抗干扰性能要求更高。因此在采用国外产品时,需按我国的标准(GB/T13926)合理选择。2.2 综合抗干扰设计  主要考虑来自系统外部的几种干扰源并采取相应抑制措施。主要包括:对PLC系统及外引线进行屏蔽以防空间辐射电磁干扰;对外引线进行隔离、滤波,特别是动力电缆,要分层布置,以防通过外引线引入传导电磁干扰;正确设计接地点和接地装置,完善接地系统。另外还必须利用软件手段,进一步提高系统的安全可靠性。2.3 电源的选择  在PLC控制系统中,电源占有极重要的地位。主要是变送器供电的电源和PLC系统有直接电气连接的仪表供电电源引起的干扰,并没有受到足够的重视,虽然采取了一定的隔离措施,但普遍还不够。主要是使用的隔离变压器分布参数大,抑制干扰能力差,经电源耦合而串入共模干扰、差模干扰。所以,对于变送器和共用信号仪表供电应选择分布电容小、抑制带大(如采用多次隔离和屏蔽及漏感技术)的配电器,以减少PLC系统的干扰。2.4 电缆的选择和布置  为了减少动力电缆辐射电磁干扰,尤其是变频装置馈电电缆,不同类型的信号分别由不同电缆传输,信号电缆应按传输信号种类分层布置,严禁用同一电缆的不同导线同时传送动力电源和信号,避免信号线与动力电缆靠近平行布置,以减少电磁干扰。2.5 滤波及软件抗干扰措施  信号在接入PLC前,在信号线与地间并接电容,以减少共模干扰;在信号两极间加装滤波器可减少差模干扰。此外,在PLC控制系统的软件设计和组态时,还应在软件方面进行抗干扰处理,进一步提高系统的可靠性。常用的一些措施:数字滤波和工频整形采样,可有效消除周期性干扰;定时校正参考点电位,并采用动态零点,可有效防止电位漂移;采用信息冗余技术,设计相应的软件标志位;采用间接跳转,设置软件陷阱等,以提高软件结构可靠性。2.6 完善接地系统  系统接地方式有浮地方式、直接接地方式和电容接地三种方式。对PLC控制系统而言,它属高速低电平控制装置,应采用直接接地方式。由于信号电缆分布电容和输入装置滤波等的影响,装置之间的信号交换频率一般都低于1MHz,所以PLC控制系统接地线采用一点接地和串联一点接地方式。集中布置的PLC系统适于并联一点接地方式,各装置的柜体中心接地点以单独的接地线引向接地极。如果装置间距较大,应采用串联一点接地方式。用一根大截面铜母线(或绝缘电缆)连接各装置的柜体中心接地点,然后将接地母线直接连接接地极。接地线采用截面大于22mm2的铜导线,总母线使用截面大于60mm2的铜排。接地极的接地电阻小于2Ω,接地极好埋在距建筑物10~15m远处,而且PLC系统接地点必须与强电设备接地点相距10m以上。信号源接地时,屏蔽层应在信号侧接地;不接地时,应在PLC侧接地;信号线中间有接头时,屏蔽层应牢固连接并进行绝缘处理,一定要避免多点接地;多个测点信号的屏蔽双绞线与多芯对绞总屏电缆连接时,各屏蔽层应相互连接好,并经绝缘处理,选择适当的接地处单点接地。  综上可见,PLC控制系统中的干扰是个十分复杂的问题,在设计中应综合考虑各方面的因素,合理有效地抑制抗干扰,对某些干扰还需作具体分析,采取对症下药的方法,才能使PLC控制系统正常工作一、引言    可编程序控制器(PLC)突出的特点是可*性高,在以PLC为主组成的PLC控制系统中绝大部分故障来自外部控制电器,如由按钮,行程开关等的损坏所引起。控制电器的故障分为两类:一类是控制电器的触点产生氧化膜,使触点无法闭合而产生开路故障;另一类是控制电器触点熔合而产生短路故障。这都将影响PLC控制系统的正常工作。为能快速准确地对PLC控制系统中控制电器的故障进行检测,探讨利用PLC内部富余的器件对PLC输入控制电器的开路与短路故障进行自动诊断,以便及时排除故障,保证PLC控制系统的正常运行。二、输入控制电器短路故障的检测1、短路故障的分析与设计    为检测出某控制电器的短路故障,可在梯形图有关的步序段中串联上被检测电器的常开点,当该电器常开点变为闭合即出现短路故障时,则立即接通输出继电器,此继电器为PLC辅助继电器,使有关的输出设备停止工作,并使故障指示灯亮,以使操作人员迅速发现故障并判断出原因。为避免在步序转换瞬间有些被检测电器的常开点闭合,致使故障指示出现短暂的错误,可根据需要设置若干个定时器,使步转换时间相同且有间隔的步共用一个定时器。定时器的常开点串联在相应的步序段中,时间设定值略大于步转换时间,这样就不会出现错误的故障指示。若在每一步序段中设置一个由PLC内部辅助继电器组成的步序状态指示器,将指示器的常开点与上述定时器的常开点和故障输出继电器串联起来,就可实现利用步序状态指示器对该步进行故障检测。只有系统运行到该步才能检测出有关的故障电器。    PLC控制系统的输入控制电器可能多达几十甚至上百个,即系统有几十甚至上百个步序段,而状态寄存器的触点只能使用一次。若按步序指令编制程序,为检测故障就需另选内部辅助继电器作为状态指示器。这样不仅占用了大量辅助继电器,而且使梯形图相当复杂。在这种情形之下,采用移位寄存器的编程方法来编制程序比较理想。这样不仅可以利用移位寄存器对众多步序段系统进行控制,而且可利用PLC内部丰富的辅助继电器作为步序状态指示器,从而实现对众多输入控制电器的故障检测。2、故障检测的选择    假若在每一步序段对所有的输入控制电器全部进行检测,这将使梯形图非常繁杂。经分析和实际运用证明,不需要在每步序段对所有输入控制电器进行短路检测,只要在某步序段检测一个有关的输入电器即可。一般选取每一步序段中LD指令的控制电器,即开始某段程序的控制电器。三、输入控制电器开路故障的检测1、开路故障的分析与设计    在PLC控制系统正常运行的状态下,每一步序都有一定的时间间隔。若输入控制电器出现了开路故障,则系统将无法转入下一步的工作而停顿。故必须检测出控制电器的开路故障。要检测开路故障只要将有关步序的步序状态指示器的常开点和下一步步序状态指示器常闭点及定时器的线圈串联起来,在该步序段开始时立即定时,当该步序段结束并转入下一步后使定时器复位。若系统在定时器设定时间内结束该步,定时时间到,则其常开点闭合,指示出故障信号。定时器的定时值的选取需要注意以下两点:一是保证系统迅速检测出开路故障;二是准确的定时时间(即步进时间)需要现场调试确定。2、故障检测的选择    对大量输入控制电器进行开路检测必将占用较多的定时器,而PLC内部定时器数量有限,故对控制电器的检测可作如下处理:(1)对于步序时间相同且有间隔的步可共用一个定时器。(2)开路故障检测选取某步序段前OUT的控制电器。(3)选择故障率高的控制电器进行检测。四、故障检测的设计1、瓶签检测系统瓶签检测系统如图1所示。图1 瓶签检测线    系统中有光电开关0001和0002检查传送带上的瓶子。若检测到无标签的瓶子则0001通,这时系统控制一个机械手从A传送带拿开并放到B传送带上。当机械手回到始位后,机械手原始位置0004检测接通,同时系统还对无标签的瓶子进行计数,当计数值达到设定值时报警灯亮。2、控制系统梯形图    设计出C系列PLC控制系统梯形图如图2所示。图2 瓶签检测PLC控制系统梯形图[NextPage]3、控制电器开路故障检测    需要检测的控制电器有光电开关0001和0002,停止按钮0003和机械手原始位置检测0004。根据上述思路设计出输入控制电器的开路故障检测梯形图,如图3所示。图3 输入控制电路开路故障检测梯形图[NextPage]4、控制电器短路故障检测    需要检测的控制电器与开路时相同。设计出控制电器短路故障检测梯形图,如图4所示。图4 输入控制电器短路故障检测梯形图5、几点说明(1)鉴于瓶签检测系统输出点较少,PLC内部剩余了较多输出点,所以在设计中使用较为简单的方法实现对控制电器的故 障检测,各个被检测电器的每种故障由一个独立输出点予以显示,使故障的显示一一对应,清晰明了。  (2)若控制系统比较复杂,输入控制电器和输出设备较多,使输出点数富余较少时,为减少故障显示所占用的输出点数,需加入状态指示器,可采用8421码来分配故障显示灯(输出点对应的指示灯),而程序作相应的调整就可以了。五、结束语    PLC的内部资源如输出继电器、辅助继电器、定时器等,一般情形之下均未被完全利用,所以可利用这些内部富余的电器对PLC外部的输入控制电器进行故障自动检测。该检测无需任何外部元器件和经费就可实现。这对于保证PLC控制系统的正常运行具有重要意义。
推荐产品
信息搜索
 
西门子新闻
浔之漫智控技术-西门子PLC代理商
  • 地址:上海市松江区石湖荡镇塔汇路755弄29号1幢一层A区213室
  • 手机:15221406036
  • 联系人:聂航
6es7231新闻