全国服务热线: 15221406036
企业新闻

6ES7214-2AD23-0XB8规格说明

发布时间:2023-11-27        浏览次数:2        返回列表
前言:西门子代理商,西门子模块代理商,西门子一级代理商,西门子PLC代理,西门子中国代理商
6ES7214-2AD23-0XB8规格说明
6ES7214-2AD23-0XB8规格说明步进及其驱动器在刺绣机上获得了广泛的运用。电脑刺绣机是80年代国外纺织机械中的新产品。它运用微机技术,实现刺绣整个过程的自动化,大大提高了刺绣产品的质量和生产效率。电脑刺绣机是的产品,主要由刺绣机身、系统、计算机系统、驱动执行机构系统、刺绣框、刺绣头以及信号等部分组成,其刺绣动作过程为,由磁盘或纸带机将花样信号送入计算机,经计算机处理后送入步进电机驱动系统和主轴控制系统,后由动力系统带动刺绣框、刺绣头协调运动,刺绣开始。在刺绣过程中,步进电机驱动绣框运行是重要的环节,它直接影响到绣品的质量、刺绣效率和噪声大小。电脑刺绣机是使用微机对步进电机的速度进行控制,控制的实质就是控制电机驱动负载时的运行曲线,首要的是进给脉冲时刻的计算,是一种软件控制方法。通常的设计方法是使步进电机按加速、匀速、减速的曲线运行,离线计算出定时时间,把它们写入内存中,实现步进电机速度控制软件化。这种方法的缺点是计算机只能按照事先给定的速度曲线对步进电机进行控制,无法按照刺绣工况的变化随时修改速度曲线的参数,使步进电机在合理的状态下运行。本文介绍一种适合在电脑刺绣机上使用的步进电机的运行曲线及其计算方法,实现了定时参数的在线计算。2实现的曲线及其参数的计算2.1实现的曲线(见附图)考察如下的正弦函数:式中π=3.1415926,t为步进电机的运行时间。实现这种函数曲线的优点为:a.由于曲线平滑,步进电机驱动负载运行平稳、柔和、噪声小。b.满足步进电机慢起动、慢停止的特性。c.有明确的数学表达式,易于在线计算和实现。d.对于不同的刺绣工况,可通过改变参数a和t实现。2.2计算假设步进电机驱动负载时的某工况为,在t时间内需要步进电机运行n步,电机的高运行频率为fm,起始频率和终了频率都为零。运行曲线为式(1)的f(t),把t分为n份,即△t1,△t2,……,△tn,t=△t1+△t2+……+△tn。令:t1=△t1t2=△t1+△t2tn=t=△t1+△t2+……+△tn如附图所示,令f(t)在t轴上半部所围成的面积为n,f(t)与△t1, △t2,……△tn所围成的面积都为1,即:参数a的确定a为步进电机的实际高运行频率,按式(2)可求出a的值。必须保证a应小于给定的电机高运行频率,否则会引起严重后果。2.2.2 参数t(i=1,2,……,n)的确定按式(3)可得:由于t0=0,按式(5)可递推出t1,t2,……,tn-1的值。△ t1=t1△ t2=t2-t1...△ tn=t-tn-12.2.3进给脉频率fi(i=1,2,……,n)的计算fi=1/△ti(i=1,2,……,n) (6)不难证明,fi为函数f(t)=asin(π/t ·t) (ti-1≤t≤ti)上的一点。3应用举例在某电脑刺绣机产品上,步进电机驱动绣框水平前后左右移动,脉冲当量为0 .lmm,刺绣某针迹长度为4ram(相应的脉冲数量为n=40),给定的时间为30ms,步进电机的起蛄和终了频率都为零,计算各进给脉冲的时间和相应的运行频率。4结语实现曲线是步进电机平均建度的连线,在某一进给脉冲间隔内,它又是理想的正弦曲线某一时刻的速度,实现的精度是曲边梯形和单位矩形面积之差的值。这种方法实班的关键在于所使用的计算机要有三角函数的处理能力,且有较高的运算速度,否则难以胜任高速刺绣。1引言步进的基本特性,如牵出特性、牵入特性、保持转矩特性及矩角特性等,都较为大家所熟悉。但是步进电动机还有一项较为特殊但很为重要的特性——振动特性,尚较为生疏,缺乏对它的系统完整的认识,这一方面可能是由于对振动特性影响的因素很多,较难掌握其规律性;一方面由于对振动特性定量研究的方法和手段不完善。作者建立的振动特性测试系统[1],为实验研究步进电动机系统的振动特性提供了手段,进而建立了步进电动机系统振动特性的仿真模型和方法[2],解决了对振动特性的定量分析和计算,本文用实验和仿真的方法系统地分析和介绍不同的参数对振动特性的影响,有利于对振动特性进一步了解和掌握,对设计、制造和应用系统的工作者都是必要的。为使所研究的结果有现实意义和代表性,本文的研究结合实际的系统进行,实际系统由应用为广泛的二相混合式步进电动机和近代电流型驱动器组成。2振动特性的一般说明振动特性用步进电动机转子角速度波动的振幅与控制脉冲频率的关系表示,是衡量电动机运行平稳性的重要特性,振动特性的特点是在不同的频域会出现一些峰值点和振幅增大的区间,前者是某一谐波转矩的频率与固有频率相一致的谐振点;后者则属于零阻尼或负阻尼状态的不稳定区。图1表示实测的典型的振动特性,被测步进电动机是一台86bh250b型二相混合式步进电动机,基本技术数据为:相绕组电阻r=1.2ω,电感l=10. 0mh,转子转动惯量j=2.4×10-4kg.,旋转电势系数ke=0. 028 6v/(rad/s),阻尼系数p=l.4×10-4nm/(rad/s),额定相电流1= 3a;保持转矩tk≥5nm,定位转矩to=0.15nm,转子齿数z= 50,配套的电流控制型驱动器通电状态数可以为m=1、4、8、10或20,功放级电压实验时为30v。2.1频域的划分步进电动机有自己的固有频率或自然频率,工程上用下式估算:将被试电机的数据代人为:习惯上把fcp=fo附近及以下的频域称为低频段;高频段的划定不是根据频率的值,通常以fcp=mifo附近及以上的频域称为高频段,以上二个频域之间称为中频段。以图la的特性为例,fo≈160脉冲/s,m1=20,大体上的划分可认为,200脉冲/s以下为低频段,3 000脉冲/s以上为高频段,200~3 000脉冲/s之间称为中频段。图la的特性按频段划分可以看出,在低频段fcp=160脉冲/s处有一峰值,这就是通常所说的低频谐振点;中频段在fcp=400脉冲/s和800脉冲处有谐振点,且fy=5fo处的振幅较高,比较突出;高频段在fe=3 200脉冲/s附近有一振荡区,在fp>;3 600脉冲/s处有较明显的不稳定区。2.2基本电磁周期是在不同频率输入脉冲的控制下,按一定的逻辑状态循环通电而运转的,因此存在着二种基本电磁周期,其一是拉制脉冲频率fcp的倒数,即控制脉冲周期:另一是以通电逻辑循环为周期的电磁系统基波周期,如果电动机的逻辑通电状态数为m1,则有:电机绕组电压、电流的基波频率为:相应地对图la振动特性上的谐振点有二种提法,例如fcp=160脉冲/s处的谐振点,对于控制脉冲周期的激扰,是它的基波频率与固有频率相一致;对于基本电磁周期,则是它的m1=20次谐波频率与固有频率相一致,同样,fcp= 800脉冲/s处的谐振点,对于控制脉冲周期是吉次的次谐波振荡,而对于基本电磁周期则是4次谐波的振荡,两种出发点都可以,哪一种能较直观地阐明振荡的机理就从哪一种角度去提出。3通电状态数的影响步进电动机是在不同频率的输入脉冲控 一台电动机,除了通电状态数不同以外,其他驱动条件也都在一样情况下测出。图lb是整步运行、步距角大、分辨率低的情况,表现出较严重的低频谐振现象,在fcp=fo(160脉冲/s)处有较突出的谐振点,在fep处也有明显的谐振点。图1a为20状态运行,提高了分辨率,低频段的谐振现象不明显。仍有一谐振点,但角速度振动的峰值不大,不到整步时的百分之40,处已感觉不出谐振点,且提高分辨率以后同样fo对应的角速度按比例地降低了。图1b的曲线表明,在600~1 500脉冲/s之间有明显的不稳定区,图1a的特性,通电状态数增加后,高频段相应地改为l≥3 000脉冲/s处,可看出不稳定现象仍然存在,只是角速度波动的幅值稍低一些,在中频段fcp=400脉冲/s和800脉冲/s处有新的谐振点,这是微步驱动时各微步之间转矩不均匀产生的新的激扰所引起的谐振,可通过对参考电流波形专门的研究克服。为了校核振动特性的仿真模型和方法,对图1的特性进行仿真,所得结果如图2所示,与图lb的曲线相比较可看出,低频段的曲线基本一致,谐振点对应的频率和峰值基本相符l高频不稳定区的频域及角速度振荡的幅值也大体相符,与图1a昀曲线相比较可看出,低频谐振点及峰值相一致,高频不稳定区的频域相一致,角速度振荡的振幅有些偏高}中频谐振点的位置相一致,fep=800脉冲/s处的峰值稍偏低一些,fcp=400脉冲/s处的峰值偏差较大,这是由于转矩合成时非线性影响未加jingque考虑引起的,有待进一步完善,总的来看,仿真结果能基本正确反映振动特性的主要特征,用它研究不同参数对振动特性的影响,主要看振动特性的相对变化。4功放级电压的影响图3示功放级电压值不同时的一条振动特性,与图2a相比较,可看出功放级电压对振动特性有明显的影响。功放电压增高时明显的影响是高频不稳定区向更高的频域移动;功放电压改变时,低频段的振动特性基本不变;中频谐振点位置不变,峰值有所增加。采取措施对中频振荡加以抑制条件下,用提高功放电压的办法移开高频不稳定区,不失为提高运行平稳性的一种方便的方法。5结论(1)采用微步驱动技术提高分辨率,对改善低频运行的平稳性有显著的效果。(2)微步驱动对高频不稳定性有一定的影响,但不能消除,还需要采取其他措施消除。(3)微步运行时会引起中频段新的谐振点,需要作专门的研究解决。(4)提高功放电压能使高频不稳定区向更高的频域移动,有利于提高一定频域范围内运行的平稳性l引言能方便地进行速度与角度控制,使其在现代自动控制方面占有越来越重要的地位。即使在开环状态下,它也能实现较高精度的位置控制。然而,步进电机在使用时,其可控角是以步为单位的,也就是说,角度是跳跃式变化的;而且由于受到加工工艺的影响,一个步长一般在1度左右,每个步长也并非完全相等,因而在精度要求较高的场合,就要求对步进电机转角误差有一定的认识,以及采取相应的提高精度的措施。2误差的分类在步进电机的使用中,所产生的转角误差可以分成两大类,一类与步进电机直接有关;而另外一类不仅与步进电机本身有关,还与驱动方式有关。2.1不积累误差不积累误差也叫静态步距角误差,指在空载条件下,步进电机的实际运行角度与理论运行角度之间的差别。为了分析方便,在不积累误差中不考虑摩擦力的影响,它与驱动电流也没有任何关系。对于一个质量较高的电机,这个误差一般在57左右。不同步进电机的不积累误差也是不同的。对于一个特定的电机而言,其不积累误差一般是固定的。原理上可以通过预先测量这些误差,然后通过一定的补偿,以提高精度。但实际上.必须时刻知道步进电机的确切运行位置(也就是运行到哪一步),而要得到这个信息,有两个手段,一是通过其它位置测知这个位置;一是设置一记忆电路,能时刻记住步进电机的位置。然而这样做的结果是增大了电路的复杂性。由于加工上的原因,步进电机在运行整拍时相互之间的角度间隔误差保持较小的值,因此在要求较高步距精度的时候,可以考虑采用整拍运行方式。步进电机在整转运行时其不积累误差理论上永远为零,因此在高精度驱动中,可以考虑采用整转运行方案。此时,失调角误差或回滞误差是大的误差源。2.2失调角误差失调角误差也叫负载角误差,指步进电机在驱动负载的条件下,为了产生一定的负载力矩,步进电机需产生一个失调角θ。根据理论计算,对于一个步距角为1.5度的三相步进电机,由于负载力矩丁而引起的角度变化为:可见,为了得到较高的精度,则必须驱动较低的负载。2.3回滞误差如果加在步进电机上的负载力矩改变方向,则所产生的失调角与原来的相反。因此,即使负载保持恒定(包括摩擦力),并假设电机无任何不积累误差,那么由于电机可能的正、反方向运行,也会产生一个相当大的角度误差。为了消除回滞误差而提高精度,反向驱动时,可多运行一定的步数,然后返回,使负载力矩保持一个方向。2.4重复误差在负载恒定的条件下,步进电机朝原来运动方向的反方向运转”步后再前进行步,它的起始位置与终止位置有差别。这个误差的来源比较复杂。_般在几角秒之内,典型值为±0. 0014。。因此,在大多数场合下是可以忽略不计的。3通电状态对误差的影响单相通电状态比双相(多相)通电状态的精度要高一些。这主要是由于多相通电时空载步距角将与两相绕组中的电流比有关,改变每一相电流的大小都将影响到步距角精度。在无稳流电路的情况下,这个变化有可能是相当大的。以三相步进电机为例。附图中,设由a,b两相通电所产生的力矩分别为ta、tu,则有:然而,对于单相通电,在负载为零的情况下,转子的定位位置与电流的大小无关。4细分引起的误差步进电机的步距角一般在1度左右,有时需要比这个值小得多的步距角,可采用细分技术。采用细分技术只能提高步进电机的分辨率,并没有提高其精度。对于一般的驱动电路,细分后还会带来一些误差。这些误差主要与驱动有关。4.1电压失调误差对于细分控制的驱动电路,当把一相绕组中的电流关断时,绕组中的电流理论上应为零值。然而,对于具有电流反馈环的驱动电路,由于放大电路的失调,绕组中实际通过的电流波形是有一定区别的。当控制输入为零时,实际输出可能并非为零,在这个电流的作用下,步进电机的转子将会产生一个失调角。达种失调角在用普通驱动电路驱动时也是存在的,只是较小而已。因此,对于精密驱动,应该设置失调电压调整装置,以使失调电流尽可能小。4.2电流增益误差在驱动负载时,静态失调角是负载力矩与大转矩的函数,也就是负载力矩与相电流的函数。因此,当各相电流增益不同时,所产生的静态失调角也将随着角度的变化而变化。因此,保持恒定的电流增益是提高驱动精度的一种手段。值得注意的是,由于电机电枢绕组参数可能相互之间有一定的差别,因此这里所提的增益恒定是一个综合性指标。电流增益误差对微动步距角误差的影响比较大。小的电流增益误差可以改善微动步距角误差。失调角误差、电流增益误差等还会对电机的运行特性有一定的影响,带来一定程度的共振。在实际使用时,也可以利用这一性质来调节失调电压及电流。保证电机在整个运行区间都能平稳的工作,也反映了上述误差已减至小。4.3微动角误差通过细分可以提高步距分辨率。理论上若把一步细分成n等分,则步距角可以减小到原来的以分之一。实际上,根据电机制造工艺、细分电路的不同,实际微步步距并非等分,可能有很大的差别。在具有反馈环的控制系统中,要充分考虑这种不均匀性,以免引起系统的振荡。细分电路主要用在步进电机的低速运行场合,以提高其运行特性,或者用在具有角度反馈环的闭环控制系统中,以提高精度。采用细分电路后,无疑使步进电机的低速运行特性或在共振颇率附近的运行特性得到提高,而在开环系统中使用这一技术的大理由就是提高步进电机的稳定性,而并非是为了提高其精度。另外,这种电路也无疑限制了电机的高速运行。在开环系统中,细分技术并没有提高精度,由于步进电机的整步不积累误差是不变的,因而无论怎样细分,后的精度是受这个误差限制的。对于一个步距精度为5’的电机,即使采用细分,其定位精度好时也只能是5。采用细分后,对两相双极型混合式步进电机,其驱动电流波形为正余弦形;而对于反应式步进电机,理想的驱动电流波形为一谐波较少的阶梯波。合适的细分波形不但可以提高角度分辨率,而且可以提高步进电机的运行特性。5结语在现代的一些精密位置控制系统中,步进电机得到了广泛的应用。为了保证整个系统可靠地工作,对步进电机产生的角度误差来源应有一定的认识。单方面追求小的不积累误差并不能从实质上提高系统的精度,只能提高成本,因为通过文中的分析可以看到,可能一个较小的负载力矩就会产生与之相当的角度误差。在一些场合,技巧也是特别重要的。单相通电方式、整步运行方式、整转运行方式等都能在一定程度上改善其精度。细分能够提供高于步距角大得多的分辨率,然而在开环控制中,很难得到写之相应的精度。这时之所以要使用细分,完全是为了提高其低频运行特性(由于速度上的原因,在高频时很少采用)。为了得到具有分辨率水平的精度,必须采用匹配精度的位置传感器,组成一闭环系统,这无疑增加了电路的复杂性,也降低了可靠性。
浔之漫智控技术-西门子PLC代理商
  • 地址:上海市松江区石湖荡镇塔汇路755弄29号1幢一层A区213室
  • 手机:15221406036
  • 联系人:聂航
推荐产品
信息搜索
 
西门子新闻