前言:西门子代理商,西门子模块代理商,西门子一级代理商
西门子模块6GK7243-1GX00-0XE0大量现货 矿山安全管理是一项复杂的系统工程,它是以环境、机械、设备、产品、原材料以及相关的人和环境等综合系统为管理对象,终的目的是保护人和生产资料的安全。矿山的生产是针对位于地下的三维空间中的矿体,矿体周围又有复杂的地质断层,矿山生产的采煤、掘进、通防、机电、运输五个大系统就分布在地下空间中,整个生产过程受瓦斯、一氧化碳、煤尘、涌水、机电、顶板、通风等因素的威胁,复杂的环境条件要求我们随时要注意安全.出现异常能快速准确地定位事故及准确的采取措施。目前我们传统的安全管理方式是以人为主要因素,没有定位、定量、准确性差,越来越不适应于生产的发展,必须采用先进的方法和手段才能更好地解决生命安全保障问题。我们所希望的未来矿山安全系统是能够事先预测事故的发生,掌握事故的规律,做出定性和定量的评价,向有关人员预先警告事故的危险性,将事故的损失降到低。本文所阐述的应用设想就是对未来矿山安全系统的一种探索。 1 Zigbee 相关技术介绍 ZigBee是一种新兴的短距离,低速率,低功耗,低成本无线网络技术,它是一种介于无线标记技术和蓝牙之间的技术提案。它此前被称作“Home RF Lite”或“Fire Fly”无线技术,主要用于近距离无线连接。ZigBee的网络标准由IEEE 802.15工作组负责制订,Zigbee是IEEE 802.15.4标准在商业推广上的名称。802.15.4标准的适用范围非常贴近生产和生活,对数据速率和Qos的要求不高,目标市场是工业,家庭以及医疗等需要低功耗低成本以及大面积使用无线监控设备的领域。其基本技术参数如表1所示。 2.3 工作原理说明 系统设计的基本思想是用传感器和Zigbee模块构成简单的穿戴式网络。 矿工身上佩戴的终端设备主要由各种传感器,报警器以及Zigbee发射接收模块组成。传感器主要由两部分组成,一部分用于环境监测:包括瓦斯浓度探测,一氧化碳浓度探测,空气湿度探测等功能;另一部分用于矿工生命体征的采集:诸如脉搏、血压、呼吸、体温等,包括脉搏传感器,温度传感器,状态传感器等。上述各种传感器对各种原始信号进行采集后,需要进行模拟信号到数字信号的转换,这一过程要经过模拟信号放器,A/D转换器,电平比较器,信号处理器等设备,转换后得到的数字信号经过Zigbee发射模块无线传输至矿井坑道壁上的网关设备。 坑道中每隔几十米架设固定的网关设备,并用线缆相联,用于收集Zigbee无线信号,并将收集到的数据通过有线方式传输到地面上的中央控制计算机。由于矿井采掘面不断延伸,有线设备的架设不便及时跟进,所以在采掘面附近采用Zigbee无线中继设备将信号传输至相邻网关。无线网关还需要根据中央控制机算计的指令为建立和启动网络这一过程设置参数,其中包括选择一个射频信道、唯一的网络标识符以及一系列操作参数,以及完成由Zigbee无线数据到有线传输数据格式的转换。 矿工佩戴的终端设备都拥有一个64位的IEEE地址,也可以使用16位短地址来减少数据包大小,这样只要记录下终端地址就可以很容易确定矿工身份。在发生矿难时也很容易根据网关后记录找到具体矿工的位置,便于营救。在无线传输时的路由选择在默认时使用树形路由选择,即在做路由选择策略时利用树形结构选址。有了树形路由选择,设备不必保存占用庞大内存的路由表或进行任何额外的空中下载技术操作来发现路径,因此小化了网络liuliang,同时简化了设备结构,降低了成本和设备功耗,一般Zigbee设备的耗电量极低,发射功率可以控制在1mW以内,两节普通的五号电池可以支持系统终端工作三个月到一年的时间,非常适合在工矿企业大面积装备。如果采用矿工自身携带的照明系统蓄电池供电,终端的续航能力将大大tigao。 网关收集到的信号通过有线方式传输到地面上,有线互联采用的具体介质以及其中的数据传输方式的选择要根据具体情况综合成本等多方面因素具体考虑,有线数据通过接口模块的格式转换将之变成计算机能识别处理的数据。 中央控制计算机内部软件要完成的任务主要有:整个系统的控制,数据处理比较以决定是否发出报警,矿难发生时记录终端位置以便营救,对整个系统的数据进行自动备份,且自动上传至政府安全生产监督管理局监管系统主机。对系统的控制包括控制Zigbee网络开启关闭设置参数等。数据处理主要是对收集的各种参数与预先内置在系统中正常值进行比较,比如对瓦斯浓度进行对比以决定是否要切断电源;对一氧化碳浓度进行对比以决定是否要人员撤离;对空气湿度进行对比以判断是否有发生透水事故的可能等。软件系统中查询历史数据的功能是必不可少的,因为通过查询就可以得知在发生意外时,各个终端的具体位置,以及终端佩带者当时的身体状况,从而为详细制定营救方案提供依据。对于所有矿井安全管理的数据都要自动上传到当地国家安全生产监督管理局的监控主机,便于政府对矿业安全的监管。中央控制计算机内部软件设计具体流程如图3所示。3 结论 Zigbee技术的引入使我们可以定量定性的对矿井的安全状况做出评估,使减少人为因素在矿业安全管理上造成的漏洞成为可能。后续的技术研发将进一步加强终端的灵敏度探测范围以及续航能力,进一步加强无线传输的可靠性准确性,进一步扩充网关和中央控制计算机的功能,以及加强系统远程控制能力,使各地国家安全生产监督管理局能直接控制矿井安全管理,减少私人矿井所有者玩忽职守的可能,以达到进一步tigao现有矿井安全管理水平的目的。 一:引言 PLC的数字量输入接口并不复杂,我们都知道PLC为了tigao抗干扰能力,输入接口都采用光电耦合器来隔离输入信号与内部处理电路的传输。因此,输入端的信号只是驱动光电耦合器的内部LED导通,被光电耦合器的光电管接收,即可使外部输入信号可靠传输。 目前PLC数字量输入端口一般分单端共点与双端输入,各厂商的单端共点(Com)的接口有光电耦合器正极共点与负极共点之分,日系PLC通常采用正极共点,欧系PLC习惯采用负极共点;日系PLC供应欧洲市场也按欧洲习惯采用负极共点;为了能灵活使用又发展了单端共点(S/S)可选型,根据需要单端共点可以接负极也可以接正极。 由于这些区别,用户在选配外部传感器时接法上需要一定的区分与了解才能正确使用传感器与PLC为后期的编程工作和系统稳定奠定基础。 二:输入电路的形式 1、输入类型的分类 PLC的数字量输入端子,按电源分直流与交流,按输入接口分类由单端共点输入与双端输入,单端共点接电源正极为SINK(sink Current 拉电流),单端共点接电源负极为SRCE(source Current 灌电流)。 2、术语的解释 SINK漏型 SOURCE源型 SINK漏型为电流从输入端流出,那么输入端与电源负极相连即可,说明接口内部的光电耦合器为单端共点为电源正极,可接NPN型传感器。 SOURCE源型为电流从输入端流进,那么输入端与电源正极相连即可,说明接口内部的光电耦合器为单端共点为电源负极,可接PNP型传感器。 国内对这两种方式的说法有各种表达: 1)、根据TI的定义,sink Current 为拉电流,source Current为 灌电流, 2)、由按接口的单端共点的极性,共正极与共负极。这样的表述比较容易分清楚。 3)、SINK为NPN接法,SOURCE为PNP接法(按传感器的输出形式的表述)。 4)、SINK为负逻辑接法,SOURCE为正逻辑接法(按传感器的输出形式的表述)。 5)、SINK为传感器的低电平有效,SOURCE为传感器的高电平有效(按传感器的输出状态的表述)。 这种表述的笔者接触的多,也是容易引起混淆的说法。 接近开关与光电开关三、四线输出分NPN与PNP输出,对于无检测信号时NPN的接近开关与光电开关输出为高电平(对内部有上拉电阻而言),当有检测信号,内部NPN管导通,开关输出为低电平。 对于无检测信号时PNP的接近开关与光电开关输出为低电平(对内部有下拉电阻而言),当有检测信号,内部PNP管导通,开关输出为高电平。 以上的情况只是针对,传感器是属于常开的状态下。目前可厂商生产的传感器有常开与常闭之分;常闭型NPN输出为低电平,常闭型PNP输出为高电平。因此用户在选型上与供应商配合上经常产生偏差。 另一种情况,用户也遇到SINK接PNP型传感器,SOURCE接NPN型传感器,也能驱动PLC接口,对于PLC输入信号状态则由PLC程序修改。原因是传感器输出有个上拉电阻与下拉电阻的缘故,对于集电极开路的传感器,这样的接法是无效的;另外输出的上拉电阻与下拉电阻阻值与PLC接口漏电流参数有很大关系。并非所有的传感器与PLC都可以通用,对于此类问题可以参考笔者的另一文《接近开关、光电开关的输出与负载接口问题》,在此不再赘述。 SINK漏型、SOURCE源型在下文有详细图解描述。 3、按电源配置类型 3.1、直流输入电路 如图1,直流输入电路要求外部输入信号的元件为无源的干接点或直流有源的无触点开关接点,当外部输入元件与电源正极导通,电流通过R1,光电耦合器内部LED,VD1(接口指示)到COM端形成回路,光电耦合器内部接收管接受外部元件导通的信号,传输到内部处理;这种由直流电提供电源的接口方式,叫直流输入电路;直流电可以由PLC内部提供也可以外接直流电源提供给外部输入信号的元件。R2在电路中的作用是旁路光电耦合器内部LED的电流,保证光电耦合器LED不被两线制接近开关的静态泄漏电流导通。 3.1、交流输入电路 如图2,交流输入电路要求外部输入信号的元件为无源的干接点或交流有源的无触点开关接点,它与直流接口的区分在光电耦合器前加一级降压电路与桥整流电路。外部元件与交流电接通后,电流通过R1,C2经过桥整流,变成降压后的直流电,后续电路的原理与直流的一致。交流PLC主要适用相对环境恶劣,,布线技改变动不大等场合;如接近开关就用交流两线直接替代原来行程开关。 4:按端口类型 4.1单端共点(Comcon)数字量输入方式 为了节省输入端子,单端共点输入的结构是在PLC内部将所有输入电路(光电耦合器)的一端连接在一起接到标示为COM的内部公共端子(internal comcon terminal),各输入电路的另一端才接到其对应的输入端子X0、X1、X2、....,com共点与N个单端输入就可以做N个数字量的输入(N+1个端子),因此我们称此结构为"单端共点"输入。用户在做外部数字量输入组件的接线时也需要同样的作法,需要将所有输入组件的一端连接在一起,叫输入组件的的外部共线(external comcon wire);输入组件的另一端才接到PLC的输入端子X0、X1、X2、....。如果COM为电源24V+(正极),外部共线就要接24V-(负极),此接法称SINK(sink Current 拉电流)输入方式;也称之PLC接口共电源正极。如果COM为电源24V-(负极),外部共线就要接24V+(正极),此接法称SRCE(source Current 灌电流)输入方式;也称之PLC接口共电源负极。SINK(sink Current 拉电流)输入方式,可接NPN型传感器,即X端口与负极相连。SRCE(source Current 灌电流)输入方式,可接PNP型传感器。即X端口与整机极相连。为了适应各地区的使用习惯,内部公共端子有的厂家的PLC是采用S/S端子,此端子可以与电源的24V+(正极)或24V-(负极)相连,结合外部共线接线变化使PLC可以 SINK(sink Current 拉电流)输入方式,可接NPN型传感器和SRCE(source Current 灌电流)输入方式,可接PNP型传感器。较采用COM端的PLC更灵活。S/S端子的发展是为了适用日系与欧系PLC混合使用工控场合,起到通用的作用,S/S端子也称之 SINK/SRCE可切换型。(外部输入组件可以为按钮开关、行程开关、舌簧开关、霍尔开关、接近开关、光电开关、光幕传感器、继电器触点、接触器触电等开关量的元件。) 4.1.1 SINK(sink Current 拉电流)输入方式●单端共点SINK输入接线(内部共点端子COM→24V+,外部共线→24V-)。如图3: 4.1.2 SRCE(source Current 灌电流)输入方式● 单端共点SRCE输入接线(内部共点端子COM→24V-,外部共线→24V+)。如图4: 4.1.3 SINK/SRCE可切换输入方式 S/S端子与COM端不同的是,COM是与内部电源正极或负极固定相连,S/S端子是非固定相连的,根据需要才与内部电源或外部电源的正极或者负极相连。● 单端共点SINK输入接线(内部共点端子S/S→24V+,外部共线→24V-)。● 单端共点SRCE输入接线(内部共点端子S/S→24V-,外部共线→24V+)。 4.2.4:当有源输入元件(霍尔开关、接近开关、光电开关、光幕传感器等)数量比较多,消耗功率比较大,PLC内置电源不能满足时,需要配置外置电源。根据需求可以配24VDC,一定功率的开关电源。外置电源原则上不能与内置电源并联,根据COM与外部共线的特点, SINK(sink Current 拉电流)输入方式时,外置电源与内置电源正极相连接; SRCE(source Current 灌电流)输入方式时,外置电源与内置电源负极相连接。4.2.5:简单判断SINK(sink Current 拉电流)输入方式,只需要Xn端与负极短路,如果接口指示灯亮就说明是SINK输入方式。共正极的光藕合器,可接NPN型的传感器。 SRCE(source Current 灌电流)输入方式,将Xn端与正极短路,如果接口指示灯亮就说明是SRCE输入方式。共负极的光藕合器,可接PNP型的传感器。4.2.4:对于2线式的开关量输入,如果是无源触点,SINK与SRCE按上图的输入元件接法,对于2线式的接近开关,需要判断接近开关的极性,正确接入。我公司部分2线式的LJK系列接近开关也有不分极性即可接入接口的,具体参考附带产品说明书。4.2、超高速双端输入电路主要用于硬件高速计数器(HHSC)的输入使用,接口电压为5VDC,在应用上为确保高速及高噪音抗性通常采用双线驱动方式(Line-Drive)。如果工作频率不高与噪音低也可以采用5VDC的单端SINK或者SRCE接法,串联一个限流电阻转换成24VDC的单端SINK或者SRCE接法。 4.2.1、双输入端双线驱动方式(Line-Drive)。4.2.2、5VDC的单端SINK或者SRCE接法。4.2.3、24VDC的单端SINK或者SRCE接法。注:24VDC供电的传感器,在输入回路上需要串联限流电阻,R1为10Ω,R2为2KΩ,不串联限流电阻,将烧毁接口回路,限流电阻取值2.7KΩ。四:外部输入元件1:无源干接点(按钮开关、行程开关、舌簧磁性开关、继电器触点等)无源干接点比较简单,接线容易。不存在电源的极性,压降等因素,上图3-6中的输入元件这是此类型。这里不重复介绍。2:有源两线制传感器(接近开关、有源舌簧磁性开关)有源两线接近开关分直流与交流,此传感器的特点就是两根线,传器输出端导通后,为了保证电路正常工作需要一个保持电压来维持电路工作,通常在3.5-5V的压降,静态泄露电流要小于1mA,这个指标很重要;如果过大,在接近开关没检测信号时,就使PLC的输入端的光电耦合器导通。我公司的LJK系列两线制接近开关静态泄露电流控制在0.35-0.5mA之间适应各类型PLC。直流两线制接近开关分二极管极性保护与桥整流极性保护,前者在接PLC时需要注意极性,后者就不需要注意极性。有源舌簧磁性开关主要用在汽缸上做位置检测,由于需要信号指示,内部有双向二极管回路,因此也不需要注意极性;交流两线制接近开关就不需要注意极性。如图10:2.1、单端共点SINK输入接线(内部共点端子COM→24V+,外部共线→24V-)。如图112.2、单端共点SRCE输入接线(内部共点端子COM→24V-,外部共线→24V+)。如图12:2.3、S/S端子接法参考图5-图6以及图11-图12。3:有源三线传感器(电感接近开关、电容接近开关、霍尔接近开关、光电开关等)直流有源三制线接近开关与光电开关输出管使用三极管输出,因此传感器分NPN和PNP输出,有的产品是四线制,有双NPN或双PNP,只是状态刚好相反,也有NPN和PNP结合的四线输出。NPN型当传感器有检测信号VT导通,输出端OUT的电流流向负极,输出端OUT电位接近负极,通常说的高电平翻转成低电平。PNP型当传感器有检测信号VT导通,正极的电流流向输出端OUT,输出端OUT电位接近正极,通常说的低电平翻转成高电平。电路中三极管的发射极上的电阻为短路保护采样电阻2-3Ω不影响输出电流。三极管的集电极的电阻为上拉与下拉电阻,提供输出电位,方便电平接口的电路,另一种输出的三极管集电极开路输出不接上拉与下拉电阻,更多问题可以参考《接近开关、光电开关的输出与负载接口问题》的文章。简单说当三极管VT导通,相当与一个接点导通,如图13:3.1单端共点SINK输入接线(内部共点端子COM→24V+,外部共线→24V-)。如图14:2.2、单端共点SRCE输入接线(内部共点端子COM→24V-,外部共线→24V+)。如图15:2.3、S/S端子接法参考图5-图6、图11-图12以及图14-图15。五、结束语PLC输入接口电路形式和外接元件(传感器)输出信号形式的多样性,因此在PLC输入模块接线前必要了解PLC输入电路形式和传感器输出信号的形式,才能确保PLC输入模块接线正确无误,在实际应用中才能游刃有余,后期的编程工作和系统稳定奠定基础企业新闻