前言:西门子代理商,西门子一级代理商,西门子模块代理商
6ES7214-2AS23-0XB8库存充足1 引言 项目原型基于小型制袋封切机开发外销出口型新机。原制袋宽度为600-1000mm。由于该机型送料胶辊惯量较小,送料电机采用130步进电机经过减速可实现传动,使用单片机进行位置控制。新机型制袋宽度tigao到1500mm,送料胶辊惯量大幅增加,考虑到既能满足精度和速度的要求又有较大的瞬间转矩,送料系统改用伺服电机。由于用PLC开发周期较短而且抗干扰性、灵活性好,所以采用PLC+HMI作为控制系统。同时可实现中英文操作画面,满足设备出口的要求。2 封切机机工艺2.1 工艺结构 封切机机由机身、上下切刀、变频传动机构、上下送料胶辊、伺服传动机构、放料架、放料直流电机、可调色标检测架、可移动操作箱、电控箱等单元构成,参见图1图片。2.2 封切机工艺过程(1)空白定位运行方式:忽略色标信号,送料长度为设置袋长,送料完成后剪切并计袋数,循环动作直至袋数达到设定值,停机并延时至设置时间,以等待收料设备或操作人员收集袋料后,再次启动并循环工作。(2)色标定位运行方式:送料长度为设置袋长,在此期间的色标信号忽略,继续送出偏差长度的袋料,检测色标信号,定位于色标信号,定位完成后剪切并计袋数,循环动作直至袋数达到设定值,停机并延时至设置时间,等待收料设备或操作人员收集袋料后,再次启动并循环工作。若误检次数达到默认值,则停机并报警。工作流程如图2所示。3 FD1500型封切机机电系统设计3.1 传动系统设计(1)切刀传动系统。切刀传动系统为交流变频器拖动三相异步电机,由面板电位器调速,PLC控制切刀启动与停止。传动轴上安装2只霍尔开关,分别检测切刀低位和送料/切刀高位。开关1:切刀低位信号,该信号为送料停止信号。若送料时检测到切刀低位信号则表示系统超速,需报警并停机。开关2:收到切刀低位信号后的ON信号为送料信号,是送料电机的启动信号;第二次ON信号为切刀高位信号,是高位停机时的停机信号。(2)送料传动系统。送料传动部分为交流伺服系统,采用同步带1:2减速传动。动力选用台达中惯量2KW伺服电机。具体型号:驱动器ASD-A2023M,电机ASMT20M250。(3)控制精度计算。通过以下计算得出单个脉冲对应的送料长度,即为控制精度。系统要求0.2mm定位精度,现计算得出控制精度为0.0314mm,因机械定位误差不大于0.1mm,所以:定位精度+机械误差=0.1314mm<0.2mm,定位精度满足制袋机系统要求。(4)高脉冲输出频率计算。用户要求高送料速度为180m/min,由此可计算得出系统所要求的脉冲输出频率,以此为PLC选型的重要依据。3.2 PLC与HMI选型(1)输入信号统计。在色标传感器检标时,由于袋料上所印刷的色标不同,故亮通(Light On)、暗通(Dark On)均有可能。无论亮通或是暗通,在检测到色标信号时都需要PLC作出中断响应,所以需要把色标传感器的Light On与Dark On都接入PLC。色标信号:2点;低位信号:1点;高位/送料信号:1点,共4点DI信号。(2)输出信号统计。脉冲输出(Pulse+Sign):2点(Y0,Y1);切刀动作:1点;冲孔动作:1点;蜂鸣器:1点;共5点DO信号。(3)其它功能。可输出大于系统所要求频率(95541pps)的脉冲;2点外部中断回应。 基于以上考虑,PLC选择DVP-20EH00T。具体功能参数为:200Kpps脉冲输出,8点外部中断回应。同时与HMI通信可使用RS485连接,抗干扰能力优于一般的RS232通信方式。HMI选用台达DOP-A57GSTD高性价比触摸屏,通过图3可见触摸屏操作更为直观方便。大部分操作在HMI上进行,从而可减少外部按钮开关、指示灯的使用,只保留急停按钮等必要设备。机电一体化封切机电系统原理如图4所示。3.3 PLC程序设计要点主体程序使用逻辑顺序控制,除此之外的编程重点如下:(1)使用浮点运算。为减小计算误差,如袋长脉冲数、偏差脉冲数等重要数据的计算,均使用浮点运算。经过验证,计算误差小于0.001mm。(2)袋长脉冲送料使用DPLSR可调加减速脉冲输出指令,反复修改并验证启动频率与加减速时间设置的合理性。完成袋长脉冲之后,使能色标检测,以忽略袋料中间部分的色标误检。检测到色标时,响应外部中断,执行中断程序置位M1334以停止CH0脉冲输出。可设置亮通(Light On)中断或是暗通(Dark On)中断。精简中断程序的内容,尽量减少中断对扫描周期的影响。4 结束语 FD1500型制袋封切机的性能虽已达到初的设计目标(在袋长为1000mm时,制袋速度:60个/分),但PLC脉冲输出频率尚有较大余量可用。使用标准100mm直径胶辊时,可改变伺服电机电子齿轮比,在保证控制精度的前提下,更进一步加大PLC脉冲输出频率的余量。以上有利因素均为FD1500型制袋机tigao加工速度奠定了良好的基础。二次开发时,加大减速比至1:3,将突破伺服负载/电机转子惯量比过大这一限速瓶颈,终tigao生产效率。1 引言 PLC和变频调速技术以其独特优良的控制性被广泛应用在机械、冶金、制造、化工、纺织等领域,但在乙炔压缩机上应用国内还是。乙炔压缩机是以电石为原料生产溶解乙炔的主要生产设备,主要用于乙炔气灌瓶,气灌瓶对金属切割工艺提供高效便利的动力。乙炔气灌装时,所处压力会逐渐升高,当灌装达到后期,由于压力升高,乙炔气会因高温而分解并放出大量的热,易导致爆炸。为使乙炔气在丙酮溶剂内充分溶解,保持乙炔气的稳定,不能超过一定的速度,因此当乙炔瓶的数量变化时,就涉及一个气量调节的问题,以往曾采用改变电机的极数来调节,近年来PLC和变频控制迅猛发展,可编程控制器和变频器质量稳定,调节直观方便,为乙炔压缩机的安全可靠性提供了更加可靠的工业控制设备。江西气体压缩机有限公司为满足用户不同工况下的应用需求,率先开发了在乙炔压缩机上应用PLC(西门子公司的LOGO!可编程控制器)和变频调速(艾墨森生产的变频器)技术,对温度、速度、liuliang、压力等工艺变量进行控制,取得了良好的性能效果和经济效益,该项目为2005年度江西省科技成果和科技部科技型中小企业技术创新基金立项。2 控制系统构成 江西气体压缩机有限公司生产的变频乙炔压缩机[如2Z-1.5/25型变频乙炔压缩机,拖动电机采用了YB225M-8隔爆型(dIICT4)三相异步电动机,变频器为EV2000-4T0300G[1]],控制系统有可编程控制及变频控制电路,由频率给定电路、空气开关、交流接触器组、频率选择开关、压力信号输入电路、隔离式安全栅、故障报警电路、电源电路、油泵电机驱动电路和压缩机主电机驱动电路等组成,频率给定电路又由可编程控制器和变频器构成。有关电仪原理如图1所示:图1 电仪原理框图3 控制原理及功能实现3.1 变频控制电路变频控制电路由频率给定电路和变频器启动停止电路组成。(1) 频率给定电路由可编程控制器LOGO、频率选择开关SA2、中间继电器KA7~12、及指示灯HL8~13组成(见图2)。用户可根据实际用气量来选择不同的排气量,比如将频率选择开关SA2旋至“50%排气量”时,中间继电器KA7得电动作,相应的指示灯HL8被点亮,同时中间继电器KA7的常开辅助触点闭合,输出至可编程控制器LOGO的输入端I1(见图3),可编程控制器LOGO内部已编好程序,通过可编程控制器LOGO的输出端Q1、Q2、Q3输出开关量至变频器的多段速输入端,再对变频器进行频率设定为25Hz,使之对应于“50%排气量”时的转速。同样,不同档位的频率选择,输出至可编程控制器LOGO的I1~I6输入端,就会输出不同的Q1~Q3状态,对变频器多段频率进行设定(50%、60%、70%、80%、90%、),使之对应于不同排气量时的频率,乙炔压缩机达到不同转速运行的需求。图2 速度给定与指示梯形图[2]图3 LOGO可编程控制器示意图2) 变频器启动停止电路参见图4,由启动按钮SB2、停止按钮SB1、中间继电器KA13的常开辅助触点11、11a端子及交流接触器KM1线圈组成,控制变频器的上电,只有当乙炔压缩机润滑油压力建立后,即中间继电器KA13的辅助触点11、11a端子闭合后,交流接触器KM1才会动作。图4 变频器启动停止电路示意图3.2 压力信号输入电路 压力信号输入电路由润滑油压力、进气压力和排气压力信号输入电路组成(见图5)。图5 压力信号输入电路与工艺保护电路梯形图速度给定与指示梯形图[2](1) 润滑油压力信号输入电路(见图6),由压力控制器SP2(控制油压)输出一开关量,由A1、A2接线端子接入隔离式安全栅GL1的输入端9、10脚,由隔离式安全栅GL1的输出端5、6脚输出给工艺故障报警电路的3、29端,当润滑油压力低于整定值时,由故障报警电路输出停机命令给工艺故障综合中间继电器KA6(见图5)使中间继电器KA1(见图4)断开,变频器的FWD和COM输入端无运转信号输入(见图9),使变频器停止工作,乙炔压缩机停止运行。图6 排气压力信号输入隔离式安全栅GL1电路(2) 排气压力信号输入电路(见图6),由电接点氨压表SP3(控制排气压力)输出一开关量,由A3、A4接线端子接入隔离式安全栅GL1的输入端11、12脚,由隔离式安全栅GL1的输出端7、8脚输出给工艺故障报警电路的3、33端,当排气压力高于整定值时,由工艺故障报警电路输出停机命令给工艺故障综合中间继电器KA6(见图5)使中间继电器KA1(见图4)断开,变频器的FWD和COM输入端无运转信号输入(见图9),使变频器停止工作,乙炔压缩机停止运行。(3) 进气压力信号输入电路(见图7),由电接点氨压表SP1(控制进气压力)输出一开关量,由A5、A6接线端子接入隔离式安全栅GL2的输入端9、10脚,由隔离式安全栅GL2的输出端5、6脚输出给工艺故障报警电路的3、27端,当进气压力低于整定值时,由工艺故障报警电路输出停机命令给工艺故障综合中间继电器KA6(见图5)使中间继电器KA1(见图4)断开,变频器的FWD和COM输入端无运转信号输入(见图9),使变频器停止工作,乙炔压缩机停止运行。图7 隔离式安全栅接线示意图3.3 电源电路 电源电路(见图6)由隔离变压器、压敏电阻RV、熔断器FU、开关式稳压电源DY和稳压二极管VD组成,电源电路输出+24V电压,供给压力信号输入电路中的安全式隔离栅GL1和GL2,作为安全式隔离栅GL1和GL2的工作电源。3.4 油泵电机驱动电路 油泵电机驱动电路(见图8),由启动按钮SB3、停止按钮SB4、热继电器FR的常闭辅助触点2、4端子及交流接触器KM2线圈组成,控制油泵电机的启停。当油泵电机过载时,热继电器FR动作,油泵电机M2停止运转(见图9)。图8 油泵电机与压缩机主电机驱动电路梯形图[2]图9 油泵电机与压缩机主电机驱动电路示意图3.5 压缩机主电机驱动电路 压缩机主电机驱动(见图8),电路由启动按钮SB5、停止按钮SB6、交流接触器KM2的常开辅助触点21、23端子、工艺故障综合中间继电器KA6的常闭辅助触点23、25端子、热继电器FR的常闭辅助触点2、4端子及中间继电器KA1线圈组成,控制压缩机主电机M1的启停(见图9)。只有当油泵电机M2启动且油压建立后,压缩机主电机M1才允许启动,运行中若出现工艺故障或油泵电机M2过载,均能使压缩机主电机M1停止运行。4 结束语 变频乙炔压缩机可以根据所需用,通过手动或者编程控制实现排气量的连续变化或分级输出,组合出多种方式(主要有50%、60%、70%、80%、90%、六档),根据实验测得频率给定值与排气量近乎成正比关系。从而实现了一台代替多台压缩机的作用,满足不同工况下的应用需求,节约成本,tigao了效益。同时还具有很好的性价比、操作方便、转速稳定性好、调速范围广等优点,因此变频调速方式拥有广阔的发展前景。PLC和变频调速在乙炔压缩机上的应用,解决了乙炔气灌装时存在的安全隐患,编程控制会自动检测乙炔气的压力和温度,当达到设定指标时,机器自动降低灌气量,施行安全灌气,一旦乙炔气温度超限,机器会自动报警停机,使充气的安全性大大tigao企业新闻